Co - Ag双异质结的激光程序化空间接力催化通过迁移*NO2穿梭实现硝酸盐到氨的高效转化。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing Geng,Yaocai Wu,Sihan Ji
{"title":"Co - Ag双异质结的激光程序化空间接力催化通过迁移*NO2穿梭实现硝酸盐到氨的高效转化。","authors":"Jing Geng,Yaocai Wu,Sihan Ji","doi":"10.1002/anie.202515393","DOIUrl":null,"url":null,"abstract":"Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) represents a sustainable strategy for wastewater treatment and green NH3 production; however, its efficiency is limited by sluggish reaction kinetics and the competing hydrogen evolution reaction (HER). Herein, we propose a laser-programmed spatial relay catalysis strategy mediated by migratory *NO2 intermediate on Co─Ag dual heterojunctions. Site-selective laser irradiation of Ag-predeposited Co foil generates spatially segregated interfaces, where hexagonal close-packed (hcp)-Co/face-centered cubic (fcc)-Co heterojunctions facilitate thermodynamically favorable NO3 - deoxygenation, and Ag/hcp-Co interfaces promote kinetically enhanced NO2 - protonation. Operando spectroscopic analysis, combined with electrochemical differential mass spectrometry (DEMS), confirms the migratory relay mechanism involving *NO2 transport between catalytic sites. Density functional theory (DFT) calculations show that interfacial charge redistribution enables distinct catalytic functions at interface sites. The phase-transformation-formed hcp-Co/fcc-Co heterojunctions enhance NO3 - adsorption and reduce deoxygenation barriers, whereas Ag/hcp-Co interfaces suppress HER and promote *NO hydrogenation by lowering the rate-determining *NO→*NOH barrier to 0.25 eV via Fermi-level d-band engineering. This collaborative spatial design reaches 94.8% ± 3.4% Faradaic efficiency (FE) for NH3 in nitrate-to-ammonia electroreduction at -0.4 V (versus RHE), with 92.5% activity retention over 50 cycles. It highlights the promise of interface-driven relay catalysis in complex electrochemical systems and enables scalable electrode fabrication.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"154 1","pages":"e202515393"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-Programmed Spatial Relay Catalysis on Co─Ag Dual Heterojunctions for Efficient Nitrate-to-Ammonia Conversion via Migratory *NO2 Shuttling.\",\"authors\":\"Jing Geng,Yaocai Wu,Sihan Ji\",\"doi\":\"10.1002/anie.202515393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) represents a sustainable strategy for wastewater treatment and green NH3 production; however, its efficiency is limited by sluggish reaction kinetics and the competing hydrogen evolution reaction (HER). Herein, we propose a laser-programmed spatial relay catalysis strategy mediated by migratory *NO2 intermediate on Co─Ag dual heterojunctions. Site-selective laser irradiation of Ag-predeposited Co foil generates spatially segregated interfaces, where hexagonal close-packed (hcp)-Co/face-centered cubic (fcc)-Co heterojunctions facilitate thermodynamically favorable NO3 - deoxygenation, and Ag/hcp-Co interfaces promote kinetically enhanced NO2 - protonation. Operando spectroscopic analysis, combined with electrochemical differential mass spectrometry (DEMS), confirms the migratory relay mechanism involving *NO2 transport between catalytic sites. Density functional theory (DFT) calculations show that interfacial charge redistribution enables distinct catalytic functions at interface sites. The phase-transformation-formed hcp-Co/fcc-Co heterojunctions enhance NO3 - adsorption and reduce deoxygenation barriers, whereas Ag/hcp-Co interfaces suppress HER and promote *NO hydrogenation by lowering the rate-determining *NO→*NOH barrier to 0.25 eV via Fermi-level d-band engineering. This collaborative spatial design reaches 94.8% ± 3.4% Faradaic efficiency (FE) for NH3 in nitrate-to-ammonia electroreduction at -0.4 V (versus RHE), with 92.5% activity retention over 50 cycles. It highlights the promise of interface-driven relay catalysis in complex electrochemical systems and enables scalable electrode fabrication.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"154 1\",\"pages\":\"e202515393\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202515393\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202515393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化硝酸(NO3 -)还原为氨(NH3)是废水处理和绿色NH3生产的可持续策略;然而,其效率受到反应动力学缓慢和析氢反应(HER)竞争的限制。在此,我们提出了一种由迁移*NO2中间体介导的Co─Ag双异质结激光编程空间接力催化策略。Ag预沉积Co箔的位置选择性激光照射产生空间分离界面,其中六方密排(hcp)-Co/面心立方(fcc)-Co异质结有利于热力学上有利的NO3 -脱氧,Ag/hcp-Co界面促进动力学上增强的NO2 -质子化。Operando光谱分析结合电化学微分质谱(dem)证实了催化位点之间涉及*NO2运输的迁移接力机制。密度泛函理论(DFT)计算表明,界面电荷重分配使界面位点具有不同的催化功能。相变形成的hcp-Co/fcc-Co异质结增强了NO3 -吸附并降低了脱氧势垒,而Ag/hcp-Co界面通过费米能级d波段工程将决定速率的*NO→*NOH势垒降低到0.25 eV,抑制了HER并促进了*NO加氢。与RHE相比,该协同空间设计在-0.4 V下硝酸还原氨的法拉第效率(FE)为94.8%±3.4%,50次循环后活性保持率为92.5%。它突出了界面驱动的继电器催化在复杂电化学系统中的前景,并使可扩展的电极制造成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laser-Programmed Spatial Relay Catalysis on Co─Ag Dual Heterojunctions for Efficient Nitrate-to-Ammonia Conversion via Migratory *NO2 Shuttling.
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) represents a sustainable strategy for wastewater treatment and green NH3 production; however, its efficiency is limited by sluggish reaction kinetics and the competing hydrogen evolution reaction (HER). Herein, we propose a laser-programmed spatial relay catalysis strategy mediated by migratory *NO2 intermediate on Co─Ag dual heterojunctions. Site-selective laser irradiation of Ag-predeposited Co foil generates spatially segregated interfaces, where hexagonal close-packed (hcp)-Co/face-centered cubic (fcc)-Co heterojunctions facilitate thermodynamically favorable NO3 - deoxygenation, and Ag/hcp-Co interfaces promote kinetically enhanced NO2 - protonation. Operando spectroscopic analysis, combined with electrochemical differential mass spectrometry (DEMS), confirms the migratory relay mechanism involving *NO2 transport between catalytic sites. Density functional theory (DFT) calculations show that interfacial charge redistribution enables distinct catalytic functions at interface sites. The phase-transformation-formed hcp-Co/fcc-Co heterojunctions enhance NO3 - adsorption and reduce deoxygenation barriers, whereas Ag/hcp-Co interfaces suppress HER and promote *NO hydrogenation by lowering the rate-determining *NO→*NOH barrier to 0.25 eV via Fermi-level d-band engineering. This collaborative spatial design reaches 94.8% ± 3.4% Faradaic efficiency (FE) for NH3 in nitrate-to-ammonia electroreduction at -0.4 V (versus RHE), with 92.5% activity retention over 50 cycles. It highlights the promise of interface-driven relay catalysis in complex electrochemical systems and enables scalable electrode fabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信