IF 2.9 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Guan Wang,Yanyan Cui,Hongjian Hou,Junfang Hao,Jincheng Han,Guangli Yang
{"title":"Mitochondrial adaptations and regulation of OPA1 and PERK in Tibetan sheep myocardium under high altitude conditions.","authors":"Guan Wang,Yanyan Cui,Hongjian Hou,Junfang Hao,Jincheng Han,Guangli Yang","doi":"10.1093/jas/skaf321","DOIUrl":null,"url":null,"abstract":"To elucidate the physiological mechanisms by which Tibetan sheep myocardium adapts to chronic hypoxia in high-altitude environments, this study investigated the effects of altitude on Optic Atrophy 1 (OPA1) and Protein Kinase RNA-like Endoplasmic Reticulum Kinase (PERK) expression, mitochondrial morphology, and functional integrity. Utilizing transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and reverse transcription quantitative PCR (RT-qPCR), we analyzed the protein localization and gene/protein expression levels of PERK and OPA1, the activities of malate dehydrogenase (MDH), citrate synthase (CS), and oxidative phosphorylation (OXPHOS) complexes I, II, and IV, as well as mitochondrial ultrastructure in the myocardium of Tibetan sheep inhabiting high-altitude and very-high-altitude environments. Results demonstrated significantly elevated expression levels of OPA1 and PERK proteins and their corresponding genes in very-high-altitude myocardium compared to high-altitude counterparts (P < 0.05), with a strong positive correlation between their protein expressions. Mitochondrial density in very-high-altitude cardiac muscle was markedly reduced (P < 0.05), yet these mitochondria exhibited enhanced fusion-fission dynamics, increased number and density of cristae, and a more compact arrangement (P < 0.05). Concurrently, the activity of MDH and OXPHOS complex IV was significantly higher in very-high-altitude myocardium (P < 0.05), indicative of augmented tricarboxylic acid cycle flux. Furthermore, mitochondria-associated endoplasmic reticulum (ER) membranes were more abundant in very-high-altitude samples. Collectively, these findings suggest that chronic hypoxia drives coordinated upregulation of OPA1 and PERK, remodeling mitochondrial architecture and enhancing metabolic activity. This adaptive response likely underpins the superior energy production capacity of high-altitude Tibetan sheep myocardium, ensuring functional integrity under sustained hypoxic stress.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":"99 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of animal science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jas/skaf321","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

结果显示,与高海拔心肌组织相比,极高原心肌组织中OPA1和PERK蛋白及其相关基因的表达水平显著升高(P < 0.05),且两者蛋白表达呈强正相关。高海拔心肌线粒体密度显著降低(P < 0.05),但线粒体融合-裂变动力学增强,嵴数量和密度增加,排列更紧凑(P < 0.05)。同时,高海拔心肌MDH和OXPHOS复合物IV活性显著升高(P < 0.05),表明三羧酸循环通量增强。此外,线粒体相关内质网(ER)膜在高海拔样品中更为丰富。综上所述,这些发现表明慢性缺氧驱动了OPA1和PERK的协同上调,重塑了线粒体结构并增强了代谢活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitochondrial adaptations and regulation of OPA1 and PERK in Tibetan sheep myocardium under high altitude conditions.
To elucidate the physiological mechanisms by which Tibetan sheep myocardium adapts to chronic hypoxia in high-altitude environments, this study investigated the effects of altitude on Optic Atrophy 1 (OPA1) and Protein Kinase RNA-like Endoplasmic Reticulum Kinase (PERK) expression, mitochondrial morphology, and functional integrity. Utilizing transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and reverse transcription quantitative PCR (RT-qPCR), we analyzed the protein localization and gene/protein expression levels of PERK and OPA1, the activities of malate dehydrogenase (MDH), citrate synthase (CS), and oxidative phosphorylation (OXPHOS) complexes I, II, and IV, as well as mitochondrial ultrastructure in the myocardium of Tibetan sheep inhabiting high-altitude and very-high-altitude environments. Results demonstrated significantly elevated expression levels of OPA1 and PERK proteins and their corresponding genes in very-high-altitude myocardium compared to high-altitude counterparts (P < 0.05), with a strong positive correlation between their protein expressions. Mitochondrial density in very-high-altitude cardiac muscle was markedly reduced (P < 0.05), yet these mitochondria exhibited enhanced fusion-fission dynamics, increased number and density of cristae, and a more compact arrangement (P < 0.05). Concurrently, the activity of MDH and OXPHOS complex IV was significantly higher in very-high-altitude myocardium (P < 0.05), indicative of augmented tricarboxylic acid cycle flux. Furthermore, mitochondria-associated endoplasmic reticulum (ER) membranes were more abundant in very-high-altitude samples. Collectively, these findings suggest that chronic hypoxia drives coordinated upregulation of OPA1 and PERK, remodeling mitochondrial architecture and enhancing metabolic activity. This adaptive response likely underpins the superior energy production capacity of high-altitude Tibetan sheep myocardium, ensuring functional integrity under sustained hypoxic stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of animal science
Journal of animal science 农林科学-奶制品与动物科学
CiteScore
4.80
自引率
12.10%
发文量
1589
审稿时长
3 months
期刊介绍: The Journal of Animal Science (JAS) is the premier journal for animal science and serves as the leading source of new knowledge and perspective in this area. JAS publishes more than 500 fully reviewed research articles, invited reviews, technical notes, and letters to the editor each year. Articles published in JAS encompass a broad range of research topics in animal production and fundamental aspects of genetics, nutrition, physiology, and preparation and utilization of animal products. Articles typically report research with beef cattle, companion animals, goats, horses, pigs, and sheep; however, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信