确定空间生长细胞群中多步突变负荷的有效数学方法。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-09-23 eCollection Date: 2025-09-01 DOI:10.1093/pnasnexus/pgaf271
Natalia L Komarova, Justin R Pritchard, Dominik Wodarz
{"title":"确定空间生长细胞群中多步突变负荷的有效数学方法。","authors":"Natalia L Komarova, Justin R Pritchard, Dominik Wodarz","doi":"10.1093/pnasnexus/pgaf271","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate computational prediction of mutant burden in spatially structured growing cell populations is a major goal both for basic evolutionary science, such as interpreting bacterial evolution studies, and for clinical applications, such as predicting the timing of drug resistance-induced cancer relapse for individual patients. Yet, this is currently not feasible for biologically realistic parameters, due to the inefficiency of computationally simulating stochastic mutant dynamics in large populations. Here, we fill this gap by deriving universal scaling laws that allow the straightforward prediction of the number of single-hit, double-hit, and multihit mutants as a function of wild-type population size in spatially expanding populations, in different spatial geometries, without the need to perform lengthy computer simulations. We demonstrate the applicability of this approach by reconciling different results from experimental evolution studies in bacteria that examine the role of gene amplifications for the rate of evolution.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 9","pages":"pgaf271"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455592/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient mathematical methodology to determine multistep mutant burden in spatially growing cell populations.\",\"authors\":\"Natalia L Komarova, Justin R Pritchard, Dominik Wodarz\",\"doi\":\"10.1093/pnasnexus/pgaf271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate computational prediction of mutant burden in spatially structured growing cell populations is a major goal both for basic evolutionary science, such as interpreting bacterial evolution studies, and for clinical applications, such as predicting the timing of drug resistance-induced cancer relapse for individual patients. Yet, this is currently not feasible for biologically realistic parameters, due to the inefficiency of computationally simulating stochastic mutant dynamics in large populations. Here, we fill this gap by deriving universal scaling laws that allow the straightforward prediction of the number of single-hit, double-hit, and multihit mutants as a function of wild-type population size in spatially expanding populations, in different spatial geometries, without the need to perform lengthy computer simulations. We demonstrate the applicability of this approach by reconciling different results from experimental evolution studies in bacteria that examine the role of gene amplifications for the rate of evolution.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 9\",\"pages\":\"pgaf271\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455592/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在空间结构的生长细胞群中对突变负担进行精确的计算预测是基础进化科学(如解释细菌进化研究)和临床应用(如预测个体患者耐药诱导的癌症复发时间)的主要目标。然而,由于在大种群中计算模拟随机突变动力学的效率低下,这在生物学上是不可行的。在这里,我们通过推导通用缩放定律来填补这一空白,该定律允许直接预测单命中,双命中和多命中突变体的数量,作为空间扩展种群中野生型种群大小的函数,在不同的空间几何中,无需执行冗长的计算机模拟。我们通过调和细菌实验进化研究的不同结果来证明这种方法的适用性,这些研究检查了基因扩增对进化速度的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient mathematical methodology to determine multistep mutant burden in spatially growing cell populations.

The accurate computational prediction of mutant burden in spatially structured growing cell populations is a major goal both for basic evolutionary science, such as interpreting bacterial evolution studies, and for clinical applications, such as predicting the timing of drug resistance-induced cancer relapse for individual patients. Yet, this is currently not feasible for biologically realistic parameters, due to the inefficiency of computationally simulating stochastic mutant dynamics in large populations. Here, we fill this gap by deriving universal scaling laws that allow the straightforward prediction of the number of single-hit, double-hit, and multihit mutants as a function of wild-type population size in spatially expanding populations, in different spatial geometries, without the need to perform lengthy computer simulations. We demonstrate the applicability of this approach by reconciling different results from experimental evolution studies in bacteria that examine the role of gene amplifications for the rate of evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信