微波辅助合成的共掺杂Fe3O4纳米颗粒用于优异的电催化水裂解。

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Amit Saraswat, Anuj Kumar
{"title":"微波辅助合成的共掺杂Fe3O4纳米颗粒用于优异的电催化水裂解。","authors":"Amit Saraswat,&nbsp;Anuj Kumar","doi":"10.1186/s11671-025-04285-9","DOIUrl":null,"url":null,"abstract":"<div><p>The inherent catalytic efficiency of Fe<sub>3</sub>O<sub>4</sub> nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) for water splitting is unsatisfactory owing to its limited electronic conductivity and inadequate active sites necessary for both oxygen and hydrogen evolution processes (OER and HER). These issues have prompted the investigation of diverse approaches for Fe<sub>3</sub>O<sub>4</sub> NPs, including doping with transition metals. Herein, the Co-doped Fe<sub>3</sub>O<sub>4</sub> NPs were loaded on Ni-foam using a microwave-assisted method, and characterized by various analytical techniques. The electrochemical investigations demonstrated that Co-doped Fe<sub>3</sub>O<sub>4</sub> NPs exhibit exceptional OER and HER performance, with minimal overpotentials of 146 mV and 210 mV at a current density of 10 mA/cm<sup>2</sup>, in contrast to Fe<sub>3</sub>O<sub>4</sub> NPs, which showed overpotentials of 278 mV and 245 mV at the same current density. Theoretical investigations indicated that Co-doping substantially altered the electronic structure and optimised the active sites of Fe<sub>3</sub>O<sub>4</sub> NPs, hence enhancing overall catalytic efficiency. This study presents an innovative approach for the synthesis of highly efficient, economical electrocatalysts for water splitting, with potential applications in clean energy generation and sustainable hydrogen production.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04285-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Microwave-assisted synthesized Co-doped Fe3O4 nanoparticles for superior electrocatalytic water splitting\",\"authors\":\"Amit Saraswat,&nbsp;Anuj Kumar\",\"doi\":\"10.1186/s11671-025-04285-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The inherent catalytic efficiency of Fe<sub>3</sub>O<sub>4</sub> nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) for water splitting is unsatisfactory owing to its limited electronic conductivity and inadequate active sites necessary for both oxygen and hydrogen evolution processes (OER and HER). These issues have prompted the investigation of diverse approaches for Fe<sub>3</sub>O<sub>4</sub> NPs, including doping with transition metals. Herein, the Co-doped Fe<sub>3</sub>O<sub>4</sub> NPs were loaded on Ni-foam using a microwave-assisted method, and characterized by various analytical techniques. The electrochemical investigations demonstrated that Co-doped Fe<sub>3</sub>O<sub>4</sub> NPs exhibit exceptional OER and HER performance, with minimal overpotentials of 146 mV and 210 mV at a current density of 10 mA/cm<sup>2</sup>, in contrast to Fe<sub>3</sub>O<sub>4</sub> NPs, which showed overpotentials of 278 mV and 245 mV at the same current density. Theoretical investigations indicated that Co-doping substantially altered the electronic structure and optimised the active sites of Fe<sub>3</sub>O<sub>4</sub> NPs, hence enhancing overall catalytic efficiency. This study presents an innovative approach for the synthesis of highly efficient, economical electrocatalysts for water splitting, with potential applications in clean energy generation and sustainable hydrogen production.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04285-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04285-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04285-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于Fe3O4纳米颗粒(Fe3O4 NPs)的电子导电性有限,并且氧和氢的析出过程(OER和HER)所需的活性位点不足,其对水分解的内在催化效率并不令人满意。这些问题促使了对Fe3O4 NPs的各种方法的研究,包括掺杂过渡金属。本文采用微波辅助的方法将共掺杂的Fe3O4纳米粒子负载在Ni-foam上,并通过各种分析技术对其进行了表征。电化学研究表明,共掺杂Fe3O4 NPs表现出优异的OER和HER性能,在电流密度为10 mA/cm2时,其过电位分别为146 mV和210 mV,而Fe3O4 NPs在相同电流密度下的过电位分别为278 mV和245 mV。理论研究表明,共掺杂大大改变了Fe3O4 NPs的电子结构,优化了活性位点,从而提高了整体催化效率。该研究为合成高效、经济的水裂解电催化剂提供了一种创新方法,在清洁能源发电和可持续制氢方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microwave-assisted synthesized Co-doped Fe3O4 nanoparticles for superior electrocatalytic water splitting

The inherent catalytic efficiency of Fe3O4 nanoparticles (Fe3O4 NPs) for water splitting is unsatisfactory owing to its limited electronic conductivity and inadequate active sites necessary for both oxygen and hydrogen evolution processes (OER and HER). These issues have prompted the investigation of diverse approaches for Fe3O4 NPs, including doping with transition metals. Herein, the Co-doped Fe3O4 NPs were loaded on Ni-foam using a microwave-assisted method, and characterized by various analytical techniques. The electrochemical investigations demonstrated that Co-doped Fe3O4 NPs exhibit exceptional OER and HER performance, with minimal overpotentials of 146 mV and 210 mV at a current density of 10 mA/cm2, in contrast to Fe3O4 NPs, which showed overpotentials of 278 mV and 245 mV at the same current density. Theoretical investigations indicated that Co-doping substantially altered the electronic structure and optimised the active sites of Fe3O4 NPs, hence enhancing overall catalytic efficiency. This study presents an innovative approach for the synthesis of highly efficient, economical electrocatalysts for water splitting, with potential applications in clean energy generation and sustainable hydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信