Farzaneh Yari, Simon Offenthaler, Sankit Vala, Dominik Krisch, Markus Scharber and Wolfgang Schöfberger
{"title":"用于CO2电还原的亚酞菁硼络合物:分子设计和催化见解。","authors":"Farzaneh Yari, Simon Offenthaler, Sankit Vala, Dominik Krisch, Markus Scharber and Wolfgang Schöfberger","doi":"10.1039/D5YA00136F","DOIUrl":null,"url":null,"abstract":"<p >This study presents molecular boron subphthalocyanine complex precursors ((Cl-B-SubPc) <strong>1</strong> and (Cl-B-SubPc-OC<small><sub>12</sub></small>H<small><sub>23</sub></small>) <strong>2</strong>) designed for efficient CO<small><sub>2</sub></small> reduction. The resulting heterogeneous catalysts exhibit remarkable total faradaic efficiencies of up to 98%, integrated into practical cell assemblies. Optimizations encompass not only catalyst design but also operational conditions, facilitating prolonged CO<small><sub>2</sub></small> electrolysis across various current densities. Varied C<small><sub>1</sub></small>-, C<small><sub>2</sub></small>-, and C<small><sub>3</sub></small>-product yields are observed at different reductive potentials, with electrocatalysis experiments conducted up to 200 mA cm<small><sup>−2</sup></small>. Comparative electrochemical analyses across H-cell and zero-gap cell electrolyzers show the potential for industrial scale-up. Mechanistic elucidation <em>via in situ</em> UV-vis spectroelectrochemistry, DFT calculations, and ESR spectroscopy demonstrates the involvement of boron N–C sites, initiating radical formation and utilizing boron's Lewis acid behavior in CO<small><sub>2</sub></small> capture, followed by proton-coupled electron transfer. Overall, the study underscores the transformative potential of boron subphthalocyanine systems in advancing CO<small><sub>2</sub></small> utilization technologies.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 10","pages":" 1241-1250"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455475/pdf/","citationCount":"0","resultStr":"{\"title\":\"Boron subphthalocyanine complexes for CO2 electroreduction: molecular design and catalytic insights\",\"authors\":\"Farzaneh Yari, Simon Offenthaler, Sankit Vala, Dominik Krisch, Markus Scharber and Wolfgang Schöfberger\",\"doi\":\"10.1039/D5YA00136F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study presents molecular boron subphthalocyanine complex precursors ((Cl-B-SubPc) <strong>1</strong> and (Cl-B-SubPc-OC<small><sub>12</sub></small>H<small><sub>23</sub></small>) <strong>2</strong>) designed for efficient CO<small><sub>2</sub></small> reduction. The resulting heterogeneous catalysts exhibit remarkable total faradaic efficiencies of up to 98%, integrated into practical cell assemblies. Optimizations encompass not only catalyst design but also operational conditions, facilitating prolonged CO<small><sub>2</sub></small> electrolysis across various current densities. Varied C<small><sub>1</sub></small>-, C<small><sub>2</sub></small>-, and C<small><sub>3</sub></small>-product yields are observed at different reductive potentials, with electrocatalysis experiments conducted up to 200 mA cm<small><sup>−2</sup></small>. Comparative electrochemical analyses across H-cell and zero-gap cell electrolyzers show the potential for industrial scale-up. Mechanistic elucidation <em>via in situ</em> UV-vis spectroelectrochemistry, DFT calculations, and ESR spectroscopy demonstrates the involvement of boron N–C sites, initiating radical formation and utilizing boron's Lewis acid behavior in CO<small><sub>2</sub></small> capture, followed by proton-coupled electron transfer. Overall, the study underscores the transformative potential of boron subphthalocyanine systems in advancing CO<small><sub>2</sub></small> utilization technologies.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 10\",\"pages\":\" 1241-1250\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455475/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00136f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00136f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了分子硼亚酞菁配合物前体((Cl-B-SubPc) 1和(Cl-B-SubPc- oc12h23) 2),设计用于高效的CO2还原。所得到的非均相催化剂表现出显著的总法拉第效率,可达98%,并集成到实际的电池组件中。优化不仅包括催化剂设计,还包括操作条件,促进在各种电流密度下延长CO2电解时间。在不同的还原电位下观察到不同的C1, C2和c3产物收率,电催化实验进行了高达200 mA cm-2。通过对h电池和零间隙电池电解槽的比较电化学分析,显示了工业规模扩大的潜力。通过原位紫外-可见光谱电化学、DFT计算和ESR光谱进行的机理分析表明,硼N-C位参与了自由基的形成,并利用硼的路易斯酸行为在CO2捕获中进行了质子耦合电子转移。总体而言,该研究强调了亚酞菁硼系统在推进二氧化碳利用技术方面的变革潜力。
Boron subphthalocyanine complexes for CO2 electroreduction: molecular design and catalytic insights
This study presents molecular boron subphthalocyanine complex precursors ((Cl-B-SubPc) 1 and (Cl-B-SubPc-OC12H23) 2) designed for efficient CO2 reduction. The resulting heterogeneous catalysts exhibit remarkable total faradaic efficiencies of up to 98%, integrated into practical cell assemblies. Optimizations encompass not only catalyst design but also operational conditions, facilitating prolonged CO2 electrolysis across various current densities. Varied C1-, C2-, and C3-product yields are observed at different reductive potentials, with electrocatalysis experiments conducted up to 200 mA cm−2. Comparative electrochemical analyses across H-cell and zero-gap cell electrolyzers show the potential for industrial scale-up. Mechanistic elucidation via in situ UV-vis spectroelectrochemistry, DFT calculations, and ESR spectroscopy demonstrates the involvement of boron N–C sites, initiating radical formation and utilizing boron's Lewis acid behavior in CO2 capture, followed by proton-coupled electron transfer. Overall, the study underscores the transformative potential of boron subphthalocyanine systems in advancing CO2 utilization technologies.