lDLPFC上rTMS响应的脑电微态特征:波段特异性分析。

IF 2.9 3区 医学 Q3 CLINICAL NEUROLOGY
Marius A Dragu, Gabriela Niculescu, Miralena I Tomescu
{"title":"lDLPFC上rTMS响应的脑电微态特征:波段特异性分析。","authors":"Marius A Dragu, Gabriela Niculescu, Miralena I Tomescu","doi":"10.1007/s10548-025-01146-7","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial Magnetic Stimulation (TMS), particularly Theta Burst Stimulation (TBS), is a non-invasive, non-convulsive neuromodulation technique that induces clinically relevant network modulations with long-term effects. Two TBS protocols- continuous TBS (cTBS) and intermittent TBS (iTBS)- have been approved as effective therapeutic interventions for neuropsychiatric disorders, including mood disorders. With this aim, we examined EEG microstate temporal dynamics during resting-state recordings across three sessions of TMS. Twenty-four participants underwent cTBS, iTBS, and sham stimulation in a pseudo-randomized order, each separated by at least one week. Six distinct microstates (A-F), associated with activity in specific neural networks, were identified across six frequency bands (broadband, δ, θ, α, β, and γ). Our findings reveal frequency band-specific modulation of EEG microstates B, C, E, and F, previously reported as biomarkers in mood disorders. Notably, C microstates showed increased stability, whereas microstates E and F showed decreased dynamics up to fifty-five minutes after TBS. Most importantly, a negative association was observed for microstate E occurrence, between before stimulation (pre-cTBS) and three post-standing time points (post1-cTBS, post2-cTBS, and post3-cTBS), suggesting that baseline microstate E characteristics may be related to individual variability in cTBS treatment response. These results further support the potential of TBS to induce clinically relevant neuroplastic changes, establishing a strong foundation for the development of band-specific EEG microstate markers for assessing treatment response and personalized closed-loop TMS-EEG protocols.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 6","pages":"69"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464126/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEG Microstates Signatures of rTMS Response Over the lDLPFC: A Band-Specific Analysis.\",\"authors\":\"Marius A Dragu, Gabriela Niculescu, Miralena I Tomescu\",\"doi\":\"10.1007/s10548-025-01146-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcranial Magnetic Stimulation (TMS), particularly Theta Burst Stimulation (TBS), is a non-invasive, non-convulsive neuromodulation technique that induces clinically relevant network modulations with long-term effects. Two TBS protocols- continuous TBS (cTBS) and intermittent TBS (iTBS)- have been approved as effective therapeutic interventions for neuropsychiatric disorders, including mood disorders. With this aim, we examined EEG microstate temporal dynamics during resting-state recordings across three sessions of TMS. Twenty-four participants underwent cTBS, iTBS, and sham stimulation in a pseudo-randomized order, each separated by at least one week. Six distinct microstates (A-F), associated with activity in specific neural networks, were identified across six frequency bands (broadband, δ, θ, α, β, and γ). Our findings reveal frequency band-specific modulation of EEG microstates B, C, E, and F, previously reported as biomarkers in mood disorders. Notably, C microstates showed increased stability, whereas microstates E and F showed decreased dynamics up to fifty-five minutes after TBS. Most importantly, a negative association was observed for microstate E occurrence, between before stimulation (pre-cTBS) and three post-standing time points (post1-cTBS, post2-cTBS, and post3-cTBS), suggesting that baseline microstate E characteristics may be related to individual variability in cTBS treatment response. These results further support the potential of TBS to induce clinically relevant neuroplastic changes, establishing a strong foundation for the development of band-specific EEG microstate markers for assessing treatment response and personalized closed-loop TMS-EEG protocols.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 6\",\"pages\":\"69\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464126/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-025-01146-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01146-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

经颅磁刺激(TMS),特别是θ波脉冲刺激(TBS),是一种非侵入性、非惊厥性的神经调节技术,可诱导具有长期影响的临床相关网络调节。两种TBS方案-连续TBS (cTBS)和间歇TBS (iTBS)-已被批准为包括情绪障碍在内的神经精神疾病的有效治疗干预措施。为此,我们在三次经颅磁刺激的静息状态记录中检查了脑电图的微态时间动态。24名参与者按伪随机顺序接受cTBS、iTBS和假刺激,每次间隔至少一周。在六个频带(宽带、δ、θ、α、β和γ)中,确定了与特定神经网络活动相关的六种不同的微状态(A-F)。我们的研究结果揭示了EEG微状态B、C、E和F的频段特异性调制,这些微状态之前被报道为情绪障碍的生物标志物。值得注意的是,在TBS后55分钟,C微态的稳定性增加,而E和F微态的动态下降。最重要的是,在刺激前(cTBS前)和站立后的三个时间点(1-cTBS后、2-cTBS后和3-cTBS后)之间,观察到微状态E的发生呈负相关,这表明基线微状态E特征可能与cTBS治疗反应的个体差异有关。这些结果进一步支持了TBS诱导临床相关神经可塑性改变的潜力,为开发用于评估治疗反应和个性化闭环TMS-EEG方案的波段特异性EEG微状态标记奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG Microstates Signatures of rTMS Response Over the lDLPFC: A Band-Specific Analysis.

Transcranial Magnetic Stimulation (TMS), particularly Theta Burst Stimulation (TBS), is a non-invasive, non-convulsive neuromodulation technique that induces clinically relevant network modulations with long-term effects. Two TBS protocols- continuous TBS (cTBS) and intermittent TBS (iTBS)- have been approved as effective therapeutic interventions for neuropsychiatric disorders, including mood disorders. With this aim, we examined EEG microstate temporal dynamics during resting-state recordings across three sessions of TMS. Twenty-four participants underwent cTBS, iTBS, and sham stimulation in a pseudo-randomized order, each separated by at least one week. Six distinct microstates (A-F), associated with activity in specific neural networks, were identified across six frequency bands (broadband, δ, θ, α, β, and γ). Our findings reveal frequency band-specific modulation of EEG microstates B, C, E, and F, previously reported as biomarkers in mood disorders. Notably, C microstates showed increased stability, whereas microstates E and F showed decreased dynamics up to fifty-five minutes after TBS. Most importantly, a negative association was observed for microstate E occurrence, between before stimulation (pre-cTBS) and three post-standing time points (post1-cTBS, post2-cTBS, and post3-cTBS), suggesting that baseline microstate E characteristics may be related to individual variability in cTBS treatment response. These results further support the potential of TBS to induce clinically relevant neuroplastic changes, establishing a strong foundation for the development of band-specific EEG microstate markers for assessing treatment response and personalized closed-loop TMS-EEG protocols.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信