Natascha Cardoso da Fonseca, Pegah Askari, Amy L Proskovec, Tyrell Pruitt, Sasha Alick-Lindstrom, Irina Podkorytova, Andrea Lowden, Afsaneh Talai, Joseph A Maldjian, Elizabeth M Davenport
{"title":"颅磁图神经成像:磁源成像技术的评价。","authors":"Natascha Cardoso da Fonseca, Pegah Askari, Amy L Proskovec, Tyrell Pruitt, Sasha Alick-Lindstrom, Irina Podkorytova, Andrea Lowden, Afsaneh Talai, Joseph A Maldjian, Elizabeth M Davenport","doi":"10.1007/s10548-025-01132-z","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetoencephalography (MEG) is a valuable tool in the presurgical workup of refractory epilepsy patients. Ictal Magnetic Source Imaging (MSI) can more accurately localize the ictal onset zone, aiding presurgical planning. Nevertheless, the optimal approach for ictal MSI remains undetermined. To evaluate the effectiveness of distinct ictal MSI techniques, assessing their performance based on the ictal onset pattern (IOP). Design: Retrospective study. 16 ictal MEG events from 12 epilepsy patients were retrospectively analyzed. Techniques employed include the traditional sECD, and alternative approaches comprising the linearly constrained minimum variance (LCMV) beamforming, kurtosis beamforming, and dynamic statistical parametric mapping (dSPM). Seizures were classified into IOP groups: ictal discharge, rhythmic activity (RA), slow RA, and fast activity. Sublobar and lobar concordance and the minimum Euclidean distance (Dmin) were evaluated using SEEG data as ground truth. sECD fitting failed for three seizures, whereas alternative techniques demonstrated superiority. LCMV showed the highest sublobar concordance. No significant differences in Dmin across techniques were found. All techniques performed better in the ictal discharge group. Performance declined in the rhythmic activity IOP group, especially in lower frequencies, although LCMV performed better. ECD, beamforming, and dSPM are effective techniques for ictal MEG analysis. Beamforming techniques are particularly important when ECD is unsuitable. The IOP should be considered when selecting the appropriate ictal MSI technique. Optimizing MSI techniques and customizing them based on seizure characteristics can aid in invasive study planning and potentially improve post-surgical outcomes.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 6","pages":"66"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroimaging of Ictal MEG: An Evaluation of Magnetic Source Imaging Techniques.\",\"authors\":\"Natascha Cardoso da Fonseca, Pegah Askari, Amy L Proskovec, Tyrell Pruitt, Sasha Alick-Lindstrom, Irina Podkorytova, Andrea Lowden, Afsaneh Talai, Joseph A Maldjian, Elizabeth M Davenport\",\"doi\":\"10.1007/s10548-025-01132-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetoencephalography (MEG) is a valuable tool in the presurgical workup of refractory epilepsy patients. Ictal Magnetic Source Imaging (MSI) can more accurately localize the ictal onset zone, aiding presurgical planning. Nevertheless, the optimal approach for ictal MSI remains undetermined. To evaluate the effectiveness of distinct ictal MSI techniques, assessing their performance based on the ictal onset pattern (IOP). Design: Retrospective study. 16 ictal MEG events from 12 epilepsy patients were retrospectively analyzed. Techniques employed include the traditional sECD, and alternative approaches comprising the linearly constrained minimum variance (LCMV) beamforming, kurtosis beamforming, and dynamic statistical parametric mapping (dSPM). Seizures were classified into IOP groups: ictal discharge, rhythmic activity (RA), slow RA, and fast activity. Sublobar and lobar concordance and the minimum Euclidean distance (Dmin) were evaluated using SEEG data as ground truth. sECD fitting failed for three seizures, whereas alternative techniques demonstrated superiority. LCMV showed the highest sublobar concordance. No significant differences in Dmin across techniques were found. All techniques performed better in the ictal discharge group. Performance declined in the rhythmic activity IOP group, especially in lower frequencies, although LCMV performed better. ECD, beamforming, and dSPM are effective techniques for ictal MEG analysis. Beamforming techniques are particularly important when ECD is unsuitable. The IOP should be considered when selecting the appropriate ictal MSI technique. Optimizing MSI techniques and customizing them based on seizure characteristics can aid in invasive study planning and potentially improve post-surgical outcomes.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 6\",\"pages\":\"66\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-025-01132-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01132-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Neuroimaging of Ictal MEG: An Evaluation of Magnetic Source Imaging Techniques.
Magnetoencephalography (MEG) is a valuable tool in the presurgical workup of refractory epilepsy patients. Ictal Magnetic Source Imaging (MSI) can more accurately localize the ictal onset zone, aiding presurgical planning. Nevertheless, the optimal approach for ictal MSI remains undetermined. To evaluate the effectiveness of distinct ictal MSI techniques, assessing their performance based on the ictal onset pattern (IOP). Design: Retrospective study. 16 ictal MEG events from 12 epilepsy patients were retrospectively analyzed. Techniques employed include the traditional sECD, and alternative approaches comprising the linearly constrained minimum variance (LCMV) beamforming, kurtosis beamforming, and dynamic statistical parametric mapping (dSPM). Seizures were classified into IOP groups: ictal discharge, rhythmic activity (RA), slow RA, and fast activity. Sublobar and lobar concordance and the minimum Euclidean distance (Dmin) were evaluated using SEEG data as ground truth. sECD fitting failed for three seizures, whereas alternative techniques demonstrated superiority. LCMV showed the highest sublobar concordance. No significant differences in Dmin across techniques were found. All techniques performed better in the ictal discharge group. Performance declined in the rhythmic activity IOP group, especially in lower frequencies, although LCMV performed better. ECD, beamforming, and dSPM are effective techniques for ictal MEG analysis. Beamforming techniques are particularly important when ECD is unsuitable. The IOP should be considered when selecting the appropriate ictal MSI technique. Optimizing MSI techniques and customizing them based on seizure characteristics can aid in invasive study planning and potentially improve post-surgical outcomes.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.