{"title":"使用b1校正的T1映射和基于dwi的虚拟弹性成像诊断肝纤维化的评估。","authors":"Yuanqiang Zou, Jiaqi Chen, Jinyuan Liao","doi":"10.2174/0115734056401119250908130930","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Liver fibrosis is a key pathological process that can progress to cirrhosis and liver failure. Although magnetic resonance elastography (MRE) is an established noninvasive method for fibrosis staging, its clinical application is limited by hardware dependence. The diagnostic utility of diffusionweighted imaging-based virtual MRE (vMRE) and B1-corrected T1 mapping in liver fibrosis assessment remains to be further investigated.</p><p><strong>Methods: </strong>Forty rabbits were included in the final analysis: CCl4-induced fibrosis (n=33) and control (n=7). Following Gd-EOB-DTPA administration, DWI and T1 mapping sequences were executed at 5 and 10 minutes. Diagnostic efficacy and correlations of vMRE and T1 mapping in a rabbit liver fibrosis model were evaluated.</p><p><strong>Results: </strong>Rabbits were classified into three groups: Control (n=7), Nonadvanced fibrosis (F1-F2, n=20), and Advanced fibrosis (F3-F4, n=13). The AUC values for T1post_5min, T1post_10min, rΔT1_10min, and μdiff in distinguishing controls from nonadvanced and advanced fibrosis groups were (0.78, 0.82, 0.71), (0.82, 0.85, 0.77), and (0.62, 0.69, 0.74), respectively, with μdiff showing (0.90, 0.93, 0.66). A significant positive correlation existed between μdiff and liver fibrosis grade (r=0.534, p<0.001).</p><p><strong>Discussion: </strong>μdiff correlated well with fibrosis severity and effectively identified fibrotic livers, but showed limited ability to distinguish fibrosis stages, likely due to overlapping tissue stiffness. B1-corrected T1 mapping offered complementary functional information, with the 10-minute post-contrast time point providing the best staging performance, thereby enhancing the overall diagnostic value.</p><p><strong>Conclusion: </strong>Gd-EOB-DTPA-enhanced T1 mapping and DWI-based vMRE provide substantial noninvasive assessment of liver fibrosis.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic Evaluation of Liver Fibrosis using B1-Corrected T1 Mapping and DWI-Based Virtual Elastography.\",\"authors\":\"Yuanqiang Zou, Jiaqi Chen, Jinyuan Liao\",\"doi\":\"10.2174/0115734056401119250908130930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Liver fibrosis is a key pathological process that can progress to cirrhosis and liver failure. Although magnetic resonance elastography (MRE) is an established noninvasive method for fibrosis staging, its clinical application is limited by hardware dependence. The diagnostic utility of diffusionweighted imaging-based virtual MRE (vMRE) and B1-corrected T1 mapping in liver fibrosis assessment remains to be further investigated.</p><p><strong>Methods: </strong>Forty rabbits were included in the final analysis: CCl4-induced fibrosis (n=33) and control (n=7). Following Gd-EOB-DTPA administration, DWI and T1 mapping sequences were executed at 5 and 10 minutes. Diagnostic efficacy and correlations of vMRE and T1 mapping in a rabbit liver fibrosis model were evaluated.</p><p><strong>Results: </strong>Rabbits were classified into three groups: Control (n=7), Nonadvanced fibrosis (F1-F2, n=20), and Advanced fibrosis (F3-F4, n=13). The AUC values for T1post_5min, T1post_10min, rΔT1_10min, and μdiff in distinguishing controls from nonadvanced and advanced fibrosis groups were (0.78, 0.82, 0.71), (0.82, 0.85, 0.77), and (0.62, 0.69, 0.74), respectively, with μdiff showing (0.90, 0.93, 0.66). A significant positive correlation existed between μdiff and liver fibrosis grade (r=0.534, p<0.001).</p><p><strong>Discussion: </strong>μdiff correlated well with fibrosis severity and effectively identified fibrotic livers, but showed limited ability to distinguish fibrosis stages, likely due to overlapping tissue stiffness. B1-corrected T1 mapping offered complementary functional information, with the 10-minute post-contrast time point providing the best staging performance, thereby enhancing the overall diagnostic value.</p><p><strong>Conclusion: </strong>Gd-EOB-DTPA-enhanced T1 mapping and DWI-based vMRE provide substantial noninvasive assessment of liver fibrosis.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056401119250908130930\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056401119250908130930","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Diagnostic Evaluation of Liver Fibrosis using B1-Corrected T1 Mapping and DWI-Based Virtual Elastography.
Introduction: Liver fibrosis is a key pathological process that can progress to cirrhosis and liver failure. Although magnetic resonance elastography (MRE) is an established noninvasive method for fibrosis staging, its clinical application is limited by hardware dependence. The diagnostic utility of diffusionweighted imaging-based virtual MRE (vMRE) and B1-corrected T1 mapping in liver fibrosis assessment remains to be further investigated.
Methods: Forty rabbits were included in the final analysis: CCl4-induced fibrosis (n=33) and control (n=7). Following Gd-EOB-DTPA administration, DWI and T1 mapping sequences were executed at 5 and 10 minutes. Diagnostic efficacy and correlations of vMRE and T1 mapping in a rabbit liver fibrosis model were evaluated.
Results: Rabbits were classified into three groups: Control (n=7), Nonadvanced fibrosis (F1-F2, n=20), and Advanced fibrosis (F3-F4, n=13). The AUC values for T1post_5min, T1post_10min, rΔT1_10min, and μdiff in distinguishing controls from nonadvanced and advanced fibrosis groups were (0.78, 0.82, 0.71), (0.82, 0.85, 0.77), and (0.62, 0.69, 0.74), respectively, with μdiff showing (0.90, 0.93, 0.66). A significant positive correlation existed between μdiff and liver fibrosis grade (r=0.534, p<0.001).
Discussion: μdiff correlated well with fibrosis severity and effectively identified fibrotic livers, but showed limited ability to distinguish fibrosis stages, likely due to overlapping tissue stiffness. B1-corrected T1 mapping offered complementary functional information, with the 10-minute post-contrast time point providing the best staging performance, thereby enhancing the overall diagnostic value.
Conclusion: Gd-EOB-DTPA-enhanced T1 mapping and DWI-based vMRE provide substantial noninvasive assessment of liver fibrosis.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.