γ和simGCRsim辐照后心室组织的长期通路激活。

IF 2.7 3区 医学 Q2 BIOLOGY
Gisane Khachatryan, Tamara Sirunyan, Siras Hakobyan, Suren Davitavyan, Roksana Zakharyan, Ani Stepanyan, Agnieszka Brojakowska, Mary K Khlgatian, Malik Bisserier, Shihong Zhang, David A Goukassian, Arsen Arakelyan
{"title":"γ和simGCRsim辐照后心室组织的长期通路激活。","authors":"Gisane Khachatryan, Tamara Sirunyan, Siras Hakobyan, Suren Davitavyan, Roksana Zakharyan, Ani Stepanyan, Agnieszka Brojakowska, Mary K Khlgatian, Malik Bisserier, Shihong Zhang, David A Goukassian, Arsen Arakelyan","doi":"10.1667/RADE-25-00043.1","DOIUrl":null,"url":null,"abstract":"<p><p>Space radiation represents a significant health risk for deep-space exploration, yet its long-term effects on cardiovascular function remain poorly understood. While our previous studies have highlighted persistent transcriptional changes in left ventricular (LV) and right ventricular (RV) tissues after a single whole-body irradiation in mice, a systems-level understanding of pathway activity deregulation is lacking. To address this gap, we applied the Pathway Signal Flow (PSF) algorithm to analyze long-term pathway activity alterations in LV and RV tissues of C57Bl/6J mice exposed to gamma radiation (100 cGy 137Cs) or the simplified Galactic Cosmic Ray simulation (simGCRsim, 50 cGy 500 MeV/n) composition of ion beams. RNA sequencing data were analyzed to assess pathway activity changes, sex-specific effects, and ventricular differences 440 days post-irradiation. We observed marked sex- and ventricle-specific differences in pathway deregulation. Left ventricular tissues in females exhibited broad signaling pathway alterations after simGCRsim exposure, particularly in immune response, cytoskeletal remodeling, and survival-related pathways (e.g., NF-κB, VEGF, and MAPK). In contrast, male RV tissues demonstrated higher pathway deregulation than LV, particularly in PPAR, NF-κB, and HIF-1 pathways, implicating metabolic disruption and survival adaptations. Furthermore, simGCRsim exposure induced greater long-term pathway perturbations than gamma rays. Our findings suggest that sex-dependent and ventricle-specific signaling alterations contribute to long-term cardiovascular risks following space irradiation. Notably, VEGF and NF-κB signaling emerge as key regulators of cardiac adaptation in females. Future studies in larger cohorts, incorporating early-stage molecular responses and broader pathway analyses, are needed to refine cardiovascular risk assessments for space travel.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term Pathway Activation in Cardiac Ventricular Tissues after Gamma and simGCRsim Irradiation.\",\"authors\":\"Gisane Khachatryan, Tamara Sirunyan, Siras Hakobyan, Suren Davitavyan, Roksana Zakharyan, Ani Stepanyan, Agnieszka Brojakowska, Mary K Khlgatian, Malik Bisserier, Shihong Zhang, David A Goukassian, Arsen Arakelyan\",\"doi\":\"10.1667/RADE-25-00043.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Space radiation represents a significant health risk for deep-space exploration, yet its long-term effects on cardiovascular function remain poorly understood. While our previous studies have highlighted persistent transcriptional changes in left ventricular (LV) and right ventricular (RV) tissues after a single whole-body irradiation in mice, a systems-level understanding of pathway activity deregulation is lacking. To address this gap, we applied the Pathway Signal Flow (PSF) algorithm to analyze long-term pathway activity alterations in LV and RV tissues of C57Bl/6J mice exposed to gamma radiation (100 cGy 137Cs) or the simplified Galactic Cosmic Ray simulation (simGCRsim, 50 cGy 500 MeV/n) composition of ion beams. RNA sequencing data were analyzed to assess pathway activity changes, sex-specific effects, and ventricular differences 440 days post-irradiation. We observed marked sex- and ventricle-specific differences in pathway deregulation. Left ventricular tissues in females exhibited broad signaling pathway alterations after simGCRsim exposure, particularly in immune response, cytoskeletal remodeling, and survival-related pathways (e.g., NF-κB, VEGF, and MAPK). In contrast, male RV tissues demonstrated higher pathway deregulation than LV, particularly in PPAR, NF-κB, and HIF-1 pathways, implicating metabolic disruption and survival adaptations. Furthermore, simGCRsim exposure induced greater long-term pathway perturbations than gamma rays. Our findings suggest that sex-dependent and ventricle-specific signaling alterations contribute to long-term cardiovascular risks following space irradiation. Notably, VEGF and NF-κB signaling emerge as key regulators of cardiac adaptation in females. Future studies in larger cohorts, incorporating early-stage molecular responses and broader pathway analyses, are needed to refine cardiovascular risk assessments for space travel.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-25-00043.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-25-00043.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空间辐射对深空探索构成重大健康风险,但其对心血管功能的长期影响仍知之甚少。虽然我们之前的研究强调了小鼠单次全身照射后左心室(LV)和右心室(RV)组织的持续转录变化,但缺乏对途径活性解除的系统水平理解。为了解决这一空白,我们应用途径信号流(PSF)算法分析了暴露于γ辐射(100 cGy 137Cs)或简化的银河宇宙射线模拟(simGCRsim, 50 cGy 500 MeV/n)离子束组成的C57Bl/6J小鼠左室和右室组织的长期途径活性变化。分析RNA测序数据以评估辐照后440天通路活性变化、性别特异性效应和心室差异。我们观察到通路解除管制的显著性别和心室特异性差异。暴露于simGCRsim后,女性左心室组织表现出广泛的信号通路改变,特别是免疫应答、细胞骨架重塑和生存相关通路(如NF-κB、VEGF和MAPK)。相比之下,男性右心室组织表现出比左心室更高的通路失调,特别是在PPAR、NF-κB和HIF-1通路,这意味着代谢破坏和生存适应。此外,与伽马射线相比,simGCRsim暴露诱导了更大的长期通路扰动。我们的研究结果表明,性别依赖性和心室特异性信号改变有助于空间照射后的长期心血管风险。值得注意的是,VEGF和NF-κB信号是女性心脏适应的关键调节因子。未来需要在更大的队列中进行研究,包括早期分子反应和更广泛的途径分析,以完善太空旅行的心血管风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term Pathway Activation in Cardiac Ventricular Tissues after Gamma and simGCRsim Irradiation.

Space radiation represents a significant health risk for deep-space exploration, yet its long-term effects on cardiovascular function remain poorly understood. While our previous studies have highlighted persistent transcriptional changes in left ventricular (LV) and right ventricular (RV) tissues after a single whole-body irradiation in mice, a systems-level understanding of pathway activity deregulation is lacking. To address this gap, we applied the Pathway Signal Flow (PSF) algorithm to analyze long-term pathway activity alterations in LV and RV tissues of C57Bl/6J mice exposed to gamma radiation (100 cGy 137Cs) or the simplified Galactic Cosmic Ray simulation (simGCRsim, 50 cGy 500 MeV/n) composition of ion beams. RNA sequencing data were analyzed to assess pathway activity changes, sex-specific effects, and ventricular differences 440 days post-irradiation. We observed marked sex- and ventricle-specific differences in pathway deregulation. Left ventricular tissues in females exhibited broad signaling pathway alterations after simGCRsim exposure, particularly in immune response, cytoskeletal remodeling, and survival-related pathways (e.g., NF-κB, VEGF, and MAPK). In contrast, male RV tissues demonstrated higher pathway deregulation than LV, particularly in PPAR, NF-κB, and HIF-1 pathways, implicating metabolic disruption and survival adaptations. Furthermore, simGCRsim exposure induced greater long-term pathway perturbations than gamma rays. Our findings suggest that sex-dependent and ventricle-specific signaling alterations contribute to long-term cardiovascular risks following space irradiation. Notably, VEGF and NF-κB signaling emerge as key regulators of cardiac adaptation in females. Future studies in larger cohorts, incorporating early-stage molecular responses and broader pathway analyses, are needed to refine cardiovascular risk assessments for space travel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信