836k中性闭壳分子的量子力学数据集,含有多达5个重原子,包括C、N、O、F、Si、P、S、Cl、Br。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Danish Khan, Anouar Benali, Scott Y H Kim, Guido Falk von Rudorff, O Anatole von Lilienfeld
{"title":"836k中性闭壳分子的量子力学数据集,含有多达5个重原子,包括C、N、O、F、Si、P、S、Cl、Br。","authors":"Danish Khan, Anouar Benali, Scott Y H Kim, Guido Falk von Rudorff, O Anatole von Lilienfeld","doi":"10.1038/s41597-025-05428-4","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the Vector-QM24 (VQM24) dataset comprehensively covering all possible neutral closed-shell small organic and inorganic molecules with up to five heavy (p-block) atoms: C, N, O, F, Si, P, S, Cl, Br. All valid stoichiometries, Lewis-rule-consistent graphs, and stable conformers (identified via GFN2-xTB) were enumerated combinatorially, yielding 577k conformational isomers spanning 258k constitutional isomers and 5,599 unique stoichiometries. DFT (ωB97X-D3/cc-pVDZ) optimizations were performed for all, and diffusion quantum Monte Carlo (DMC@PBE0(ccECP/cc-pVQZ)) energies are provided for 10,793 lowest-energy conformers with up to 4 heavy atoms. VQM24 includes structures, vibrational modes, rotational constants, thermodynamic properties (Gibbs free energies, enthalpies, ZPVEs, entropies, heat capacities), and electronic properties such as atomization, electron interaction, exchange-correlation, dispersion energies, multipole moments (dipole to hexadecapole), alchemical potentials, Mulliken charges, and wavefunctions. Machine learning models of atomization energies on this dataset reveal significantly higher complexity than QM9, with none achieving chemical accuracy. VQM24 offers a rigorous, high-fidelity benchmark for evaluating quantum machine learning models.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1551"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum mechanical dataset of 836k neutral closed-shell molecules with up to 5 heavy atoms from C, N, O, F, Si, P, S, Cl, Br.\",\"authors\":\"Danish Khan, Anouar Benali, Scott Y H Kim, Guido Falk von Rudorff, O Anatole von Lilienfeld\",\"doi\":\"10.1038/s41597-025-05428-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce the Vector-QM24 (VQM24) dataset comprehensively covering all possible neutral closed-shell small organic and inorganic molecules with up to five heavy (p-block) atoms: C, N, O, F, Si, P, S, Cl, Br. All valid stoichiometries, Lewis-rule-consistent graphs, and stable conformers (identified via GFN2-xTB) were enumerated combinatorially, yielding 577k conformational isomers spanning 258k constitutional isomers and 5,599 unique stoichiometries. DFT (ωB97X-D3/cc-pVDZ) optimizations were performed for all, and diffusion quantum Monte Carlo (DMC@PBE0(ccECP/cc-pVQZ)) energies are provided for 10,793 lowest-energy conformers with up to 4 heavy atoms. VQM24 includes structures, vibrational modes, rotational constants, thermodynamic properties (Gibbs free energies, enthalpies, ZPVEs, entropies, heat capacities), and electronic properties such as atomization, electron interaction, exchange-correlation, dispersion energies, multipole moments (dipole to hexadecapole), alchemical potentials, Mulliken charges, and wavefunctions. Machine learning models of atomization energies on this dataset reveal significantly higher complexity than QM9, with none achieving chemical accuracy. VQM24 offers a rigorous, high-fidelity benchmark for evaluating quantum machine learning models.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"1551\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05428-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05428-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了Vector-QM24 (VQM24)数据集,全面涵盖了所有可能的中性闭壳小有机和无机分子,这些分子含有多达五个重(P块)原子:C, N, O, F, Si, P, S, Cl, Br。所有有效的化学计量、刘易斯规则一致图和稳定的构象(通过GFN2-xTB识别)被组合列举,得到577k构象异构体,跨越258k构象异构体和5599个独特的化学计量。对所有构象进行了DFT (ωB97X-D3/cc-pVDZ)优化,并提供了10,793个重原子最多为4个的最低能量构象的扩散量子蒙特卡罗(DMC@PBE0(ccECP/cc-pVQZ))能量。VQM24包括结构、振动模式、旋转常数、热力学性质(吉布斯自由能、焓、zpve、熵、热容量)和电子性质,如原子化、电子相互作用、交换相关、色散能、多极矩(偶极到十六极)、炼金术势、Mulliken电荷和波函数。该数据集上的原子化能量机器学习模型的复杂性明显高于QM9,但没有一个模型达到化学精度。VQM24为评估量子机器学习模型提供了严格、高保真的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum mechanical dataset of 836k neutral closed-shell molecules with up to 5 heavy atoms from C, N, O, F, Si, P, S, Cl, Br.

We introduce the Vector-QM24 (VQM24) dataset comprehensively covering all possible neutral closed-shell small organic and inorganic molecules with up to five heavy (p-block) atoms: C, N, O, F, Si, P, S, Cl, Br. All valid stoichiometries, Lewis-rule-consistent graphs, and stable conformers (identified via GFN2-xTB) were enumerated combinatorially, yielding 577k conformational isomers spanning 258k constitutional isomers and 5,599 unique stoichiometries. DFT (ωB97X-D3/cc-pVDZ) optimizations were performed for all, and diffusion quantum Monte Carlo (DMC@PBE0(ccECP/cc-pVQZ)) energies are provided for 10,793 lowest-energy conformers with up to 4 heavy atoms. VQM24 includes structures, vibrational modes, rotational constants, thermodynamic properties (Gibbs free energies, enthalpies, ZPVEs, entropies, heat capacities), and electronic properties such as atomization, electron interaction, exchange-correlation, dispersion energies, multipole moments (dipole to hexadecapole), alchemical potentials, Mulliken charges, and wavefunctions. Machine learning models of atomization energies on this dataset reveal significantly higher complexity than QM9, with none achieving chemical accuracy. VQM24 offers a rigorous, high-fidelity benchmark for evaluating quantum machine learning models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信