Yuki Takei, Hirotaka Kuroiwa, Chisaki Arai, Yuta Doi, Kentaro Semba
{"title":"新一代ALK抑制剂对ALK阳性肺癌耐药突变的临床前预测和序贯治疗策略的提出。","authors":"Yuki Takei, Hirotaka Kuroiwa, Chisaki Arai, Yuta Doi, Kentaro Semba","doi":"10.1007/s11095-025-03916-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anaplastic lymphoma kinase (ALK) gene rearrangements occur in approximately 5% of non-small cell lung cancers (NSCLCs). Although ALK tyrosine kinase inhibitors provide substantial clinical benefits, acquired resistance-conferring mutations frequently emerge, leading to disease progression. Preclinical prediction of these mutations might help guide the development of more effective sequential treatment strategies prior to clinical application.</p><p><strong>Objective: </strong>To predict the emergence of resistance mutations to the investigational ALK inhibitors zotizalkib (TPX-0131), gilteritinib (ASP2215), and neladalkib (NVL-655) following resistance to first-line alectinib and assess the potential of these drugs as second-line therapies.</p><p><strong>Methods: </strong>A polymerase chain reaction (PCR)-based mutagenesis system was used to introduce random mutations into ALK cDNA harboring representative alectinib-resistant mutations. Mutant libraries were expressed in Ba/F3 cells, which were exposed to each inhibitor. Drug-resistant clones were isolated, sequenced, and evaluated for drug sensitivity using viability assays and immunoblotting.</p><p><strong>Results: </strong>Several resistance mutations against zotizalkib, gilteritinib, and neladalkib were identified. Sequential use of these agents effectively suppressed all predicted resistance patterns with G1202R or I1171N.</p><p><strong>Conclusions: </strong>This PCR-based platform provides a valuable approach for anticipating resistance mutations and guiding the design of optimized sequential therapies. Zotizalkib, gilteritinib, and neladalkib might represent promising alternatives to lorlatinib as second-line treatments for ALK-positive NSCLC.</p><p><strong>Key points: </strong>• A PCR-based mutation prediction system was successfully applied to fourth-generation ALK inhibitors. • Neladalkib showed efficacy against G1202R-positive relapses with minimal evidence of secondary resistance mutations. • Sequential combinations of gilteritinib with either neladalkib or ensartinib may sustain efficacy and delay resistance in I1171N-positive relapses.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"1497-1509"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preclinical Prediction of Resistance Mutations and Proposal of Sequential Treatment Strategies for ALK-positive Lung Cancer Using Next-generation ALK Inhibitors.\",\"authors\":\"Yuki Takei, Hirotaka Kuroiwa, Chisaki Arai, Yuta Doi, Kentaro Semba\",\"doi\":\"10.1007/s11095-025-03916-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Anaplastic lymphoma kinase (ALK) gene rearrangements occur in approximately 5% of non-small cell lung cancers (NSCLCs). Although ALK tyrosine kinase inhibitors provide substantial clinical benefits, acquired resistance-conferring mutations frequently emerge, leading to disease progression. Preclinical prediction of these mutations might help guide the development of more effective sequential treatment strategies prior to clinical application.</p><p><strong>Objective: </strong>To predict the emergence of resistance mutations to the investigational ALK inhibitors zotizalkib (TPX-0131), gilteritinib (ASP2215), and neladalkib (NVL-655) following resistance to first-line alectinib and assess the potential of these drugs as second-line therapies.</p><p><strong>Methods: </strong>A polymerase chain reaction (PCR)-based mutagenesis system was used to introduce random mutations into ALK cDNA harboring representative alectinib-resistant mutations. Mutant libraries were expressed in Ba/F3 cells, which were exposed to each inhibitor. Drug-resistant clones were isolated, sequenced, and evaluated for drug sensitivity using viability assays and immunoblotting.</p><p><strong>Results: </strong>Several resistance mutations against zotizalkib, gilteritinib, and neladalkib were identified. Sequential use of these agents effectively suppressed all predicted resistance patterns with G1202R or I1171N.</p><p><strong>Conclusions: </strong>This PCR-based platform provides a valuable approach for anticipating resistance mutations and guiding the design of optimized sequential therapies. Zotizalkib, gilteritinib, and neladalkib might represent promising alternatives to lorlatinib as second-line treatments for ALK-positive NSCLC.</p><p><strong>Key points: </strong>• A PCR-based mutation prediction system was successfully applied to fourth-generation ALK inhibitors. • Neladalkib showed efficacy against G1202R-positive relapses with minimal evidence of secondary resistance mutations. • Sequential combinations of gilteritinib with either neladalkib or ensartinib may sustain efficacy and delay resistance in I1171N-positive relapses.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"1497-1509\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-025-03916-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03916-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preclinical Prediction of Resistance Mutations and Proposal of Sequential Treatment Strategies for ALK-positive Lung Cancer Using Next-generation ALK Inhibitors.
Background: Anaplastic lymphoma kinase (ALK) gene rearrangements occur in approximately 5% of non-small cell lung cancers (NSCLCs). Although ALK tyrosine kinase inhibitors provide substantial clinical benefits, acquired resistance-conferring mutations frequently emerge, leading to disease progression. Preclinical prediction of these mutations might help guide the development of more effective sequential treatment strategies prior to clinical application.
Objective: To predict the emergence of resistance mutations to the investigational ALK inhibitors zotizalkib (TPX-0131), gilteritinib (ASP2215), and neladalkib (NVL-655) following resistance to first-line alectinib and assess the potential of these drugs as second-line therapies.
Methods: A polymerase chain reaction (PCR)-based mutagenesis system was used to introduce random mutations into ALK cDNA harboring representative alectinib-resistant mutations. Mutant libraries were expressed in Ba/F3 cells, which were exposed to each inhibitor. Drug-resistant clones were isolated, sequenced, and evaluated for drug sensitivity using viability assays and immunoblotting.
Results: Several resistance mutations against zotizalkib, gilteritinib, and neladalkib were identified. Sequential use of these agents effectively suppressed all predicted resistance patterns with G1202R or I1171N.
Conclusions: This PCR-based platform provides a valuable approach for anticipating resistance mutations and guiding the design of optimized sequential therapies. Zotizalkib, gilteritinib, and neladalkib might represent promising alternatives to lorlatinib as second-line treatments for ALK-positive NSCLC.
Key points: • A PCR-based mutation prediction system was successfully applied to fourth-generation ALK inhibitors. • Neladalkib showed efficacy against G1202R-positive relapses with minimal evidence of secondary resistance mutations. • Sequential combinations of gilteritinib with either neladalkib or ensartinib may sustain efficacy and delay resistance in I1171N-positive relapses.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.