Štefánia Skičková, Karolína Svobodová, Myriam Kratou, Alexandra Corduneanu, Ana Laura Cano-Argüelles, Justé Aželytė, Miray Tonk-Rügen, Viktória Majláthová, Dasiel Obregon, Elianne Piloto-Sardiñas, Vaidas Palinauskas, Alejandro Cabezas-Cruz
{"title":"寄主-外寄主系统中全息生物-全息生物的相互作用。","authors":"Štefánia Skičková, Karolína Svobodová, Myriam Kratou, Alexandra Corduneanu, Ana Laura Cano-Argüelles, Justé Aželytė, Miray Tonk-Rügen, Viktória Majláthová, Dasiel Obregon, Elianne Piloto-Sardiñas, Vaidas Palinauskas, Alejandro Cabezas-Cruz","doi":"10.1186/s13071-025-07026-0","DOIUrl":null,"url":null,"abstract":"<p><p>Holobionts - hosts together with their resident microorganisms - provide a framework for studying life as a network of interdependent partners. Within host-ectoparasite holobionts, the dialogue between the two microbiomes offers powerful clues to ecological balance, disease dynamics and evolution. Because each holobiont is structurally and functionally compartmentalised, microbes exchanged at the interface can elicit highly local, niche-specific effects that ripple through the system. This review synthesises evidence for microbiota-to-microbiota interactions in four models: Varroa mite-honeybee, tick-vertebrate, bat fly-bat and mosquito-vertebrate pairs. In all cases, microbes move passively during feeding or contact, then colonise, replicate and modulate physiology and immunity, exerting a longer-lasting influence than transient biochemical cues. We further introduce the idea of indirect modulation, whereby abiotic or biotic factors act on a recipient holobiont through the intermediary of transferred microbes, underscoring the adaptive plasticity of holobiont networks. Bidirectional cross-talk forms self-reinforcing feedback loops that can redefine a microbe as pathogen, symbiont or immunomodulator, and tune its virulence according to context. These mechanisms shape disease transmission, resistance traits and the overall health of both partners. A deeper grasp of such cross-holobiont dynamics will pave the way for microbiota-based vaccines, targeted microbiome engineering and other innovative tools for human, veterinary and environmental health.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"373"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462341/pdf/","citationCount":"0","resultStr":"{\"title\":\"Holobiont-holobiont interactions across host-ectoparasite systems.\",\"authors\":\"Štefánia Skičková, Karolína Svobodová, Myriam Kratou, Alexandra Corduneanu, Ana Laura Cano-Argüelles, Justé Aželytė, Miray Tonk-Rügen, Viktória Majláthová, Dasiel Obregon, Elianne Piloto-Sardiñas, Vaidas Palinauskas, Alejandro Cabezas-Cruz\",\"doi\":\"10.1186/s13071-025-07026-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Holobionts - hosts together with their resident microorganisms - provide a framework for studying life as a network of interdependent partners. Within host-ectoparasite holobionts, the dialogue between the two microbiomes offers powerful clues to ecological balance, disease dynamics and evolution. Because each holobiont is structurally and functionally compartmentalised, microbes exchanged at the interface can elicit highly local, niche-specific effects that ripple through the system. This review synthesises evidence for microbiota-to-microbiota interactions in four models: Varroa mite-honeybee, tick-vertebrate, bat fly-bat and mosquito-vertebrate pairs. In all cases, microbes move passively during feeding or contact, then colonise, replicate and modulate physiology and immunity, exerting a longer-lasting influence than transient biochemical cues. We further introduce the idea of indirect modulation, whereby abiotic or biotic factors act on a recipient holobiont through the intermediary of transferred microbes, underscoring the adaptive plasticity of holobiont networks. Bidirectional cross-talk forms self-reinforcing feedback loops that can redefine a microbe as pathogen, symbiont or immunomodulator, and tune its virulence according to context. These mechanisms shape disease transmission, resistance traits and the overall health of both partners. A deeper grasp of such cross-holobiont dynamics will pave the way for microbiota-based vaccines, targeted microbiome engineering and other innovative tools for human, veterinary and environmental health.</p>\",\"PeriodicalId\":19793,\"journal\":{\"name\":\"Parasites & Vectors\",\"volume\":\"18 1\",\"pages\":\"373\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462341/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasites & Vectors\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13071-025-07026-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-07026-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Holobiont-holobiont interactions across host-ectoparasite systems.
Holobionts - hosts together with their resident microorganisms - provide a framework for studying life as a network of interdependent partners. Within host-ectoparasite holobionts, the dialogue between the two microbiomes offers powerful clues to ecological balance, disease dynamics and evolution. Because each holobiont is structurally and functionally compartmentalised, microbes exchanged at the interface can elicit highly local, niche-specific effects that ripple through the system. This review synthesises evidence for microbiota-to-microbiota interactions in four models: Varroa mite-honeybee, tick-vertebrate, bat fly-bat and mosquito-vertebrate pairs. In all cases, microbes move passively during feeding or contact, then colonise, replicate and modulate physiology and immunity, exerting a longer-lasting influence than transient biochemical cues. We further introduce the idea of indirect modulation, whereby abiotic or biotic factors act on a recipient holobiont through the intermediary of transferred microbes, underscoring the adaptive plasticity of holobiont networks. Bidirectional cross-talk forms self-reinforcing feedback loops that can redefine a microbe as pathogen, symbiont or immunomodulator, and tune its virulence according to context. These mechanisms shape disease transmission, resistance traits and the overall health of both partners. A deeper grasp of such cross-holobiont dynamics will pave the way for microbiota-based vaccines, targeted microbiome engineering and other innovative tools for human, veterinary and environmental health.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.