一种用于稳定全固态有机电池的活性双功能天然染料。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qihang Yu, Yang Hu, Sixu Deng, Mohsen Shakouri, Jingye Chen, Vinicius Martins, Heng-Yong Nie, Yining Huang, Yang Zhao, Karim Zaghib, Tsun-Kong Sham, Xia Li
{"title":"一种用于稳定全固态有机电池的活性双功能天然染料。","authors":"Qihang Yu, Yang Hu, Sixu Deng, Mohsen Shakouri, Jingye Chen, Vinicius Martins, Heng-Yong Nie, Yining Huang, Yang Zhao, Karim Zaghib, Tsun-Kong Sham, Xia Li","doi":"10.1038/s41467-025-62301-z","DOIUrl":null,"url":null,"abstract":"<p><p>Sustainable and cost-effective organic electrode materials are promising for next-generation lithium-ion batteries but are hindered by severe shuttle effects. While all-solid-state batteries offer a potential solution, chemical and mechanical incompatibility between organic electrode materials and inorganic solid electrolytes limit areal capacity and cycling stability, falling short of practical requirements. Here, we report a bifunctional indigo natural dye that serves as both an active material and a solid molecular catalyst in sulfide-based all-solid-state batteries, addressing these compatibility challenges. Contrary to the prevailing view that chemical reactions between organic electrode materials and sulfide solid electrolytes are detrimental, our study reveals that controlled reactions between indigo and Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte catalyze their synergistic redox process after optimizing electrode microstructures. This strategy enables a high reversible capacity of 583 mAh g<sup>-1</sup> (Li<sub>6</sub>PS<sub>5</sub>Cl contribution: 379 mAh g<sup>-1</sup>) at 0.1 C, a high areal capacity of 3.84 mAh cm<sup>-2</sup>, and good cycling stability at an operation temperature of 25 °C. These findings highlight the potential of bifunctional organic electrode materials in sulfide-based all-solid-state batteries to overcome the key challenges of organic electrode materials in practical applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8364"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460542/pdf/","citationCount":"0","resultStr":"{\"title\":\"An active bifunctional natural dye for stable all-solid-state organic batteries.\",\"authors\":\"Qihang Yu, Yang Hu, Sixu Deng, Mohsen Shakouri, Jingye Chen, Vinicius Martins, Heng-Yong Nie, Yining Huang, Yang Zhao, Karim Zaghib, Tsun-Kong Sham, Xia Li\",\"doi\":\"10.1038/s41467-025-62301-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sustainable and cost-effective organic electrode materials are promising for next-generation lithium-ion batteries but are hindered by severe shuttle effects. While all-solid-state batteries offer a potential solution, chemical and mechanical incompatibility between organic electrode materials and inorganic solid electrolytes limit areal capacity and cycling stability, falling short of practical requirements. Here, we report a bifunctional indigo natural dye that serves as both an active material and a solid molecular catalyst in sulfide-based all-solid-state batteries, addressing these compatibility challenges. Contrary to the prevailing view that chemical reactions between organic electrode materials and sulfide solid electrolytes are detrimental, our study reveals that controlled reactions between indigo and Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte catalyze their synergistic redox process after optimizing electrode microstructures. This strategy enables a high reversible capacity of 583 mAh g<sup>-1</sup> (Li<sub>6</sub>PS<sub>5</sub>Cl contribution: 379 mAh g<sup>-1</sup>) at 0.1 C, a high areal capacity of 3.84 mAh cm<sup>-2</sup>, and good cycling stability at an operation temperature of 25 °C. These findings highlight the potential of bifunctional organic electrode materials in sulfide-based all-solid-state batteries to overcome the key challenges of organic electrode materials in practical applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"8364\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460542/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62301-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62301-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

可持续和经济高效的有机电极材料在下一代锂离子电池中很有前途,但受到严重的穿梭效应的阻碍。虽然全固态电池提供了一种潜在的解决方案,但有机电极材料与无机固体电解质之间的化学和机械不相容性限制了面积容量和循环稳定性,达不到实际要求。在这里,我们报道了一种双功能靛蓝天然染料,它既可以作为硫化物基全固态电池的活性材料,又可以作为固体分子催化剂,解决了这些兼容性挑战。与普遍认为有机电极材料与硫化物固体电解质之间的化学反应是有害的观点相反,我们的研究表明,靛蓝和Li6PS5Cl固体电解质之间的受控反应在优化电极微观结构后催化了它们的协同氧化还原过程。该策略可在0.1℃下实现583 mAh g-1的高可逆容量(Li6PS5Cl贡献:379 mAh g-1), 3.84 mAh cm-2的高面容量,以及在25℃工作温度下良好的循环稳定性。这些发现突出了双功能有机电极材料在硫化物基全固态电池中的潜力,克服了有机电极材料在实际应用中的关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An active bifunctional natural dye for stable all-solid-state organic batteries.

Sustainable and cost-effective organic electrode materials are promising for next-generation lithium-ion batteries but are hindered by severe shuttle effects. While all-solid-state batteries offer a potential solution, chemical and mechanical incompatibility between organic electrode materials and inorganic solid electrolytes limit areal capacity and cycling stability, falling short of practical requirements. Here, we report a bifunctional indigo natural dye that serves as both an active material and a solid molecular catalyst in sulfide-based all-solid-state batteries, addressing these compatibility challenges. Contrary to the prevailing view that chemical reactions between organic electrode materials and sulfide solid electrolytes are detrimental, our study reveals that controlled reactions between indigo and Li6PS5Cl solid electrolyte catalyze their synergistic redox process after optimizing electrode microstructures. This strategy enables a high reversible capacity of 583 mAh g-1 (Li6PS5Cl contribution: 379 mAh g-1) at 0.1 C, a high areal capacity of 3.84 mAh cm-2, and good cycling stability at an operation temperature of 25 °C. These findings highlight the potential of bifunctional organic electrode materials in sulfide-based all-solid-state batteries to overcome the key challenges of organic electrode materials in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信