{"title":"融合体素插值和T1W体素聚类的CEST MRI两点B1校正。","authors":"Yifan Li, Wenxuan Chen, Yi Wang, Xiaolei Song","doi":"10.1002/mrm.70102","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As a sensitive metabolic MRI technique, CEST images are easily contaminated by <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> inhomogeneity due to strong dependence on saturation <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> . We aim to develop an efficient and robust two-point <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction method.</p><p><strong>Methods: </strong>The proposed method only acquires CEST images under two saturation <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> 's, { <math> <semantics> <mrow><msub><mi>B</mi> <mrow><mn>1</mn> <mo>,</mo> <mtext>high</mtext></mrow> </msub> </mrow> <annotation>$$ {\\mathrm{B}}_{1,\\mathrm{high}} $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>B</mi> <mrow><mn>1</mn> <mo>,</mo> <mi>low</mi></mrow> </msub> </mrow> <annotation>$$ {\\mathrm{B}}_{1,\\mathrm{low}} $$</annotation></semantics> </math> }, with desired <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> in between. Besides, voxel-wise Z- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> interpolation (branch A), we performed another Z- <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{T}}_1 $$</annotation></semantics> </math> - <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> calibration (branch B), which divided image voxels into bins according to the <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mi>w</mi></mrow> <annotation>$$ {\\mathrm{T}}_1\\mathrm{w} $$</annotation></semantics> </math> image and fitted a Z- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> curve for each bin. To ensure each voxel adopts a better-corrected value, we fused the images corrected from both branches, according to a mask predicted by a retrospectively trained model. For validation, glutamate CEST (GluCEST) experiments of phantom and healthy volunteers were acquired on a 5T scanner. A total of 14 <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> pairs from 2.4μT to 3.6μT were evaluated, with the 7- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction as gold standard.</p><p><strong>Results: </strong>Across glutamate phantoms with three distinct layouts, branch B demonstrated reliable correction performance for 14 <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> pairs, achieving a mean absolute error (MAE) of Z(3 ppm) ≤ 5% in all 42 experiments. For six healthy volunteers, branch B yielded Z(3 ppm) images that closely matched the 7- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> correction, and the MAE distributions proved robust to voxel-binning, fitting strategies, and the choice of <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> pair. After fusion, all volunteers displayed better structural similarity index measure (SSIM), than the lower ones corrected by either branch.</p><p><strong>Conclusions: </strong>By only acquiring two <math> <semantics> <mrow> <msup><msub><mi>B</mi> <mn>1</mn></msub> <mo>'</mo></msup> <mi>s</mi></mrow> <annotation>$$ {{\\mathrm{B}}_1}^{\\prime}\\mathrm{s} $$</annotation></semantics> </math> , our <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction strategy proved comparable performance to multi- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> methods, exhibiting robustness to <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\mathrm{B}}_1 $$</annotation></semantics> </math> selection and slice positions.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-point B<sub>1</sub> correction for CEST MRI by fusing voxel-wise interpolation and T<sub>1</sub>W voxel-clustering.\",\"authors\":\"Yifan Li, Wenxuan Chen, Yi Wang, Xiaolei Song\",\"doi\":\"10.1002/mrm.70102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>As a sensitive metabolic MRI technique, CEST images are easily contaminated by <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> inhomogeneity due to strong dependence on saturation <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> . We aim to develop an efficient and robust two-point <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction method.</p><p><strong>Methods: </strong>The proposed method only acquires CEST images under two saturation <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> 's, { <math> <semantics> <mrow><msub><mi>B</mi> <mrow><mn>1</mn> <mo>,</mo> <mtext>high</mtext></mrow> </msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_{1,\\\\mathrm{high}} $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>B</mi> <mrow><mn>1</mn> <mo>,</mo> <mi>low</mi></mrow> </msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_{1,\\\\mathrm{low}} $$</annotation></semantics> </math> }, with desired <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> in between. Besides, voxel-wise Z- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> interpolation (branch A), we performed another Z- <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{T}}_1 $$</annotation></semantics> </math> - <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> calibration (branch B), which divided image voxels into bins according to the <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> <mi>w</mi></mrow> <annotation>$$ {\\\\mathrm{T}}_1\\\\mathrm{w} $$</annotation></semantics> </math> image and fitted a Z- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> curve for each bin. To ensure each voxel adopts a better-corrected value, we fused the images corrected from both branches, according to a mask predicted by a retrospectively trained model. For validation, glutamate CEST (GluCEST) experiments of phantom and healthy volunteers were acquired on a 5T scanner. A total of 14 <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> pairs from 2.4μT to 3.6μT were evaluated, with the 7- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction as gold standard.</p><p><strong>Results: </strong>Across glutamate phantoms with three distinct layouts, branch B demonstrated reliable correction performance for 14 <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> pairs, achieving a mean absolute error (MAE) of Z(3 ppm) ≤ 5% in all 42 experiments. For six healthy volunteers, branch B yielded Z(3 ppm) images that closely matched the 7- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> correction, and the MAE distributions proved robust to voxel-binning, fitting strategies, and the choice of <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> pair. After fusion, all volunteers displayed better structural similarity index measure (SSIM), than the lower ones corrected by either branch.</p><p><strong>Conclusions: </strong>By only acquiring two <math> <semantics> <mrow> <msup><msub><mi>B</mi> <mn>1</mn></msub> <mo>'</mo></msup> <mi>s</mi></mrow> <annotation>$$ {{\\\\mathrm{B}}_1}^{\\\\prime}\\\\mathrm{s} $$</annotation></semantics> </math> , our <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> -correction strategy proved comparable performance to multi- <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> methods, exhibiting robustness to <math> <semantics> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {\\\\mathrm{B}}_1 $$</annotation></semantics> </math> selection and slice positions.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.70102\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70102","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的:CEST作为一种敏感的代谢MRI技术,由于对饱和度b1依赖性强$$ {\mathrm{B}}_1 $$,图像容易受到b1 $$ {\mathrm{B}}_1 $$不均匀性的污染。我们的目标是开发一种高效、鲁棒的两点b1 $$ {\mathrm{B}}_1 $$校正方法。方法:所提出的方法只获取两种饱和度b1 $$ {\mathrm{B}}_1 $$ s, b1,{高$$ {\mathrm{B}}_{1,\mathrm{high}} $$, b1,低$$ {\mathrm{B}}_{1,\mathrm{low}} $$下的CEST图像,}所需b1 $$ {\mathrm{B}}_1 $$介于两者之间。除了体素方向的Z- b1 $$ {\mathrm{B}}_1 $$插值(分支A)外,我们还进行了另一次Z- t1 $$ {\mathrm{T}}_1 $$ - b1 $$ {\mathrm{B}}_1 $$校准(分支B),该校准根据t1 w $$ {\mathrm{T}}_1\mathrm{w} $$图像将图像体素划分为bin,并为每个bin拟合Z- b1 $$ {\mathrm{B}}_1 $$曲线。为了确保每个体素采用更好的校正值,我们根据回顾性训练模型预测的掩模融合了从两个分支校正的图像。为了验证,在5T扫描仪上对幻影和健康志愿者进行了谷氨酸CEST (GluCEST)实验。以7- b1 $$ {\mathrm{B}}_1 $$校正为金标准,对2.4μT ~ 3.6μT范围内的14对b1 $$ {\mathrm{B}}_1 $$进行了评价。结果:在三种不同布局的谷氨酸幻像中,分支B对14对b1 $$ {\mathrm{B}}_1 $$表现出可靠的校正性能,平均绝对误差(MAE)为Z(3 ppm)≤5% in all 42 experiments. For six healthy volunteers, branch B yielded Z(3 ppm) images that closely matched the 7- B 1 $$ {\mathrm{B}}_1 $$ correction, and the MAE distributions proved robust to voxel-binning, fitting strategies, and the choice of B 1 $$ {\mathrm{B}}_1 $$ pair. After fusion, all volunteers displayed better structural similarity index measure (SSIM), than the lower ones corrected by either branch.Conclusions: By only acquiring two B 1 ' s $$ {{\mathrm{B}}_1}^{\prime}\mathrm{s} $$ , our B 1 $$ {\mathrm{B}}_1 $$ -correction strategy proved comparable performance to multi- B 1 $$ {\mathrm{B}}_1 $$ methods, exhibiting robustness to B 1 $$ {\mathrm{B}}_1 $$ selection and slice positions.
Two-point B1 correction for CEST MRI by fusing voxel-wise interpolation and T1W voxel-clustering.
Purpose: As a sensitive metabolic MRI technique, CEST images are easily contaminated by inhomogeneity due to strong dependence on saturation . We aim to develop an efficient and robust two-point -correction method.
Methods: The proposed method only acquires CEST images under two saturation 's, { , }, with desired in between. Besides, voxel-wise Z- interpolation (branch A), we performed another Z- - calibration (branch B), which divided image voxels into bins according to the image and fitted a Z- curve for each bin. To ensure each voxel adopts a better-corrected value, we fused the images corrected from both branches, according to a mask predicted by a retrospectively trained model. For validation, glutamate CEST (GluCEST) experiments of phantom and healthy volunteers were acquired on a 5T scanner. A total of 14 pairs from 2.4μT to 3.6μT were evaluated, with the 7- -correction as gold standard.
Results: Across glutamate phantoms with three distinct layouts, branch B demonstrated reliable correction performance for 14 pairs, achieving a mean absolute error (MAE) of Z(3 ppm) ≤ 5% in all 42 experiments. For six healthy volunteers, branch B yielded Z(3 ppm) images that closely matched the 7- correction, and the MAE distributions proved robust to voxel-binning, fitting strategies, and the choice of pair. After fusion, all volunteers displayed better structural similarity index measure (SSIM), than the lower ones corrected by either branch.
Conclusions: By only acquiring two , our -correction strategy proved comparable performance to multi- methods, exhibiting robustness to selection and slice positions.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.