革命性的威尔逊病预后:预测急性慢性肝衰竭的机器学习方法。

IF 7.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Zhihong Rao, Wenming Yang, Yulong Yang, Yue Yang, Yongsheng Han, Xiang Li, Siyang Lu, Yuchen Li, Hu Xi, Ke Diao, Shuzhen Fang, Wei He, Sihuan Zhu
{"title":"革命性的威尔逊病预后:预测急性慢性肝衰竭的机器学习方法。","authors":"Zhihong Rao, Wenming Yang, Yulong Yang, Yue Yang, Yongsheng Han, Xiang Li, Siyang Lu, Yuchen Li, Hu Xi, Ke Diao, Shuzhen Fang, Wei He, Sihuan Zhu","doi":"10.1186/s12967-025-06987-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Wilson disease (WD), an inherited copper metabolism disorder, is a cause of acute-on-chronic liver failure (ACLF), posing life-threatening risks due to rapid progression. This study aimed to develop a machine learning (ML)-based model to predict ACLF risk in WD patients.</p><p><strong>Methods: </strong>We retrospectively analyzed 3692 WD patients (Leipzig score ≥ 4) from The First Affiliated Hospital of Anhui University of Chinese Medicine (2014-2024), including 104 ACLF and 104 non-ACLF cases. The original data set was randomly divided into the training and test cohorts in a ratio of 7:3. Demographic, biochemical, and ultrasound data were collected. Six ML algorithms (LR, SVM, KNN, ExtraTrees, XGBoost, LightGBM) were applied to construct a predictive model, with SHAP explaining feature importance.</p><p><strong>Results: </strong>The XGBoost model achieved optimal performance (AUC: 0.998, accuracy: 0.968). Key predictors included TBA, APTT, diagnosis age, onset age, Hb. Elevated TBA, APTT and diagnosis age correlated with higher ACLF risk, while reduced onset age and Hb indicated poorer outcomes. Additional parameters (TT, Cl<sup>-</sup>, CER and hepatic imaging features) also contributed modestly to predictions.</p><p><strong>Conclusions: </strong>The ML-based model effectively predicts WD-ACLF risk, with XGBoost demonstrating superior performance. TBA, APTT, diagnosis age, onset age and Hb emerged as critical biomarkers, offering actionable insights for early clinical intervention.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"999"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462144/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Wilson disease prognosis: a machine learning approach to predict acute-on-chronic liver failure.\",\"authors\":\"Zhihong Rao, Wenming Yang, Yulong Yang, Yue Yang, Yongsheng Han, Xiang Li, Siyang Lu, Yuchen Li, Hu Xi, Ke Diao, Shuzhen Fang, Wei He, Sihuan Zhu\",\"doi\":\"10.1186/s12967-025-06987-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>Wilson disease (WD), an inherited copper metabolism disorder, is a cause of acute-on-chronic liver failure (ACLF), posing life-threatening risks due to rapid progression. This study aimed to develop a machine learning (ML)-based model to predict ACLF risk in WD patients.</p><p><strong>Methods: </strong>We retrospectively analyzed 3692 WD patients (Leipzig score ≥ 4) from The First Affiliated Hospital of Anhui University of Chinese Medicine (2014-2024), including 104 ACLF and 104 non-ACLF cases. The original data set was randomly divided into the training and test cohorts in a ratio of 7:3. Demographic, biochemical, and ultrasound data were collected. Six ML algorithms (LR, SVM, KNN, ExtraTrees, XGBoost, LightGBM) were applied to construct a predictive model, with SHAP explaining feature importance.</p><p><strong>Results: </strong>The XGBoost model achieved optimal performance (AUC: 0.998, accuracy: 0.968). Key predictors included TBA, APTT, diagnosis age, onset age, Hb. Elevated TBA, APTT and diagnosis age correlated with higher ACLF risk, while reduced onset age and Hb indicated poorer outcomes. Additional parameters (TT, Cl<sup>-</sup>, CER and hepatic imaging features) also contributed modestly to predictions.</p><p><strong>Conclusions: </strong>The ML-based model effectively predicts WD-ACLF risk, with XGBoost demonstrating superior performance. TBA, APTT, diagnosis age, onset age and Hb emerged as critical biomarkers, offering actionable insights for early clinical intervention.</p>\",\"PeriodicalId\":17458,\"journal\":{\"name\":\"Journal of Translational Medicine\",\"volume\":\"23 1\",\"pages\":\"999\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462144/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12967-025-06987-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06987-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:威尔逊病(WD)是一种遗传性铜代谢障碍,是急性慢性肝衰竭(ACLF)的一个原因,由于其快速进展,可能危及生命。本研究旨在开发一种基于机器学习(ML)的模型来预测WD患者的ACLF风险。方法:回顾性分析安徽中医药大学第一附属医院2014-2024年收治的3692例WD患者(Leipzig评分≥4),其中ACLF患者104例,非ACLF患者104例。原始数据集按7:3的比例随机分为训练组和测试组。收集人口统计学、生化和超声数据。使用6种ML算法(LR、SVM、KNN、ExtraTrees、XGBoost、LightGBM)构建预测模型,其中SHAP解释特征重要性。结果:XGBoost模型获得了最优的性能(AUC: 0.998,准确率:0.968)。主要预测因子包括TBA、APTT、诊断年龄、发病年龄、Hb。TBA、APTT和诊断年龄升高与ACLF风险升高相关,而发病年龄和Hb降低则表明预后较差。其他参数(TT、Cl-、CER和肝脏影像学特征)也有助于预测。结论:基于ml的模型能有效预测WD-ACLF风险,其中XGBoost的预测效果更好。TBA、APTT、诊断年龄、发病年龄和Hb成为关键的生物标志物,为早期临床干预提供了可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revolutionizing Wilson disease prognosis: a machine learning approach to predict acute-on-chronic liver failure.

Revolutionizing Wilson disease prognosis: a machine learning approach to predict acute-on-chronic liver failure.

Revolutionizing Wilson disease prognosis: a machine learning approach to predict acute-on-chronic liver failure.

Revolutionizing Wilson disease prognosis: a machine learning approach to predict acute-on-chronic liver failure.

Background and objectives: Wilson disease (WD), an inherited copper metabolism disorder, is a cause of acute-on-chronic liver failure (ACLF), posing life-threatening risks due to rapid progression. This study aimed to develop a machine learning (ML)-based model to predict ACLF risk in WD patients.

Methods: We retrospectively analyzed 3692 WD patients (Leipzig score ≥ 4) from The First Affiliated Hospital of Anhui University of Chinese Medicine (2014-2024), including 104 ACLF and 104 non-ACLF cases. The original data set was randomly divided into the training and test cohorts in a ratio of 7:3. Demographic, biochemical, and ultrasound data were collected. Six ML algorithms (LR, SVM, KNN, ExtraTrees, XGBoost, LightGBM) were applied to construct a predictive model, with SHAP explaining feature importance.

Results: The XGBoost model achieved optimal performance (AUC: 0.998, accuracy: 0.968). Key predictors included TBA, APTT, diagnosis age, onset age, Hb. Elevated TBA, APTT and diagnosis age correlated with higher ACLF risk, while reduced onset age and Hb indicated poorer outcomes. Additional parameters (TT, Cl-, CER and hepatic imaging features) also contributed modestly to predictions.

Conclusions: The ML-based model effectively predicts WD-ACLF risk, with XGBoost demonstrating superior performance. TBA, APTT, diagnosis age, onset age and Hb emerged as critical biomarkers, offering actionable insights for early clinical intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信