{"title":"负载白藜芦醇和银纳米粒子的聚丙烯腈和聚氧化物纳米纤维的制备及其体外和体内评价","authors":"Niloofar Seyedi, Somayeh Taymouri, Alireza Allafchian, Mohsen Minaiyan, Elham Omidi, Jaleh Varshosaz","doi":"10.1177/08853282251383323","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed hybrid nanofiber scaffolds composed of polyacrylonitrile (PAN) and polyethylene oxide (PEO), loaded with resveratrol (RSV) and silver nanoparticles (Ag NPs), aiming to enhance wound healing and provide antimicrobial protection. Using electrospinning combined with a full factorial design, we optimized formulation parameters including total polymer concentration, drug/polymer ratio, and PEO/polymer ratio. We found that increasing the drug/polymer ratio resulted in an increase in fiber diameter, whereas raising the PEO concentration decreased fiber diameter. Additionally, elevating the total polymer and PEO content significantly increased the encapsulation efficiency (EE) % of RSV in the nanofibers. Moreover, higher levels of PEO positively influenced the swelling % and release efficiency (RE) %. The optimized RSV-loaded PAN/PEO nanofibers exhibited a smooth, cylindrical, and bead-free morphology with an average diameter of 217.36 ± 37.20 nm, an EE of 83.71 ± 2.28%, drug loading of 14.47 ± 1.09%, RE over 30 h of 60.95 ± 2.36%, swelling of 1111.67 ± 122.58%, ultimate tensile strength of 2.84 ± 0.34 MPa, and Young's modulus of 26.06 ± 5.58 MPa. The incorporation of Ag NPs resulted in bead-free fibers with a slightly reduced diameter and a swelling of 1032.5 ± 106.45%.X-ray diffraction analysis confirmed the crystalline presence of both RSV and Ag NPs within the fibers. The Ag NPs imparted strong antibacterial activity, producing inhibition zones against <i>Escherichia coli</i> (31.66 ± 2.51 mm) and <i>Staphylococcus aureus</i> (18.33 ± 3.51 mm), whereas RSV alone showed no antibacterial effect. <i>In vivo</i> wound healing studies demonstrated a significantly faster wound healing rate for Ag NPs-RSV- nanofiber compared to other groups, with complete wound closure, full re-epithelialization, enhanced collagen deposition, and the formation of skin appendages by day 15. These findings suggest that RSV-loaded PAN/PEO nanofibers offer a promising medicated wound dressing capable of promoting tissue regeneration and preventing infection.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251383323"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and <i>in-vitro</i> and <i>in-vivo</i> evaluation of polyacrylonitrile and polyethylene oxide nanofibers loaded with resveratrol and silver nanoparticles for skin wound healing application.\",\"authors\":\"Niloofar Seyedi, Somayeh Taymouri, Alireza Allafchian, Mohsen Minaiyan, Elham Omidi, Jaleh Varshosaz\",\"doi\":\"10.1177/08853282251383323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study developed hybrid nanofiber scaffolds composed of polyacrylonitrile (PAN) and polyethylene oxide (PEO), loaded with resveratrol (RSV) and silver nanoparticles (Ag NPs), aiming to enhance wound healing and provide antimicrobial protection. Using electrospinning combined with a full factorial design, we optimized formulation parameters including total polymer concentration, drug/polymer ratio, and PEO/polymer ratio. We found that increasing the drug/polymer ratio resulted in an increase in fiber diameter, whereas raising the PEO concentration decreased fiber diameter. Additionally, elevating the total polymer and PEO content significantly increased the encapsulation efficiency (EE) % of RSV in the nanofibers. Moreover, higher levels of PEO positively influenced the swelling % and release efficiency (RE) %. The optimized RSV-loaded PAN/PEO nanofibers exhibited a smooth, cylindrical, and bead-free morphology with an average diameter of 217.36 ± 37.20 nm, an EE of 83.71 ± 2.28%, drug loading of 14.47 ± 1.09%, RE over 30 h of 60.95 ± 2.36%, swelling of 1111.67 ± 122.58%, ultimate tensile strength of 2.84 ± 0.34 MPa, and Young's modulus of 26.06 ± 5.58 MPa. The incorporation of Ag NPs resulted in bead-free fibers with a slightly reduced diameter and a swelling of 1032.5 ± 106.45%.X-ray diffraction analysis confirmed the crystalline presence of both RSV and Ag NPs within the fibers. The Ag NPs imparted strong antibacterial activity, producing inhibition zones against <i>Escherichia coli</i> (31.66 ± 2.51 mm) and <i>Staphylococcus aureus</i> (18.33 ± 3.51 mm), whereas RSV alone showed no antibacterial effect. <i>In vivo</i> wound healing studies demonstrated a significantly faster wound healing rate for Ag NPs-RSV- nanofiber compared to other groups, with complete wound closure, full re-epithelialization, enhanced collagen deposition, and the formation of skin appendages by day 15. These findings suggest that RSV-loaded PAN/PEO nanofibers offer a promising medicated wound dressing capable of promoting tissue regeneration and preventing infection.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251383323\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251383323\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251383323","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Fabrication and in-vitro and in-vivo evaluation of polyacrylonitrile and polyethylene oxide nanofibers loaded with resveratrol and silver nanoparticles for skin wound healing application.
This study developed hybrid nanofiber scaffolds composed of polyacrylonitrile (PAN) and polyethylene oxide (PEO), loaded with resveratrol (RSV) and silver nanoparticles (Ag NPs), aiming to enhance wound healing and provide antimicrobial protection. Using electrospinning combined with a full factorial design, we optimized formulation parameters including total polymer concentration, drug/polymer ratio, and PEO/polymer ratio. We found that increasing the drug/polymer ratio resulted in an increase in fiber diameter, whereas raising the PEO concentration decreased fiber diameter. Additionally, elevating the total polymer and PEO content significantly increased the encapsulation efficiency (EE) % of RSV in the nanofibers. Moreover, higher levels of PEO positively influenced the swelling % and release efficiency (RE) %. The optimized RSV-loaded PAN/PEO nanofibers exhibited a smooth, cylindrical, and bead-free morphology with an average diameter of 217.36 ± 37.20 nm, an EE of 83.71 ± 2.28%, drug loading of 14.47 ± 1.09%, RE over 30 h of 60.95 ± 2.36%, swelling of 1111.67 ± 122.58%, ultimate tensile strength of 2.84 ± 0.34 MPa, and Young's modulus of 26.06 ± 5.58 MPa. The incorporation of Ag NPs resulted in bead-free fibers with a slightly reduced diameter and a swelling of 1032.5 ± 106.45%.X-ray diffraction analysis confirmed the crystalline presence of both RSV and Ag NPs within the fibers. The Ag NPs imparted strong antibacterial activity, producing inhibition zones against Escherichia coli (31.66 ± 2.51 mm) and Staphylococcus aureus (18.33 ± 3.51 mm), whereas RSV alone showed no antibacterial effect. In vivo wound healing studies demonstrated a significantly faster wound healing rate for Ag NPs-RSV- nanofiber compared to other groups, with complete wound closure, full re-epithelialization, enhanced collagen deposition, and the formation of skin appendages by day 15. These findings suggest that RSV-loaded PAN/PEO nanofibers offer a promising medicated wound dressing capable of promoting tissue regeneration and preventing infection.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.