{"title":"剖面蛋白及其异构体:揭示生命形式的功能多样性。","authors":"Nupur Pathak, V Kohila","doi":"10.2174/0113892037390621250901052506","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic nature of the cell wall or plasma membrane is extremely important for the various cellular functions. The rearrangement of the cytoskeleton within the cell is a crucial process that is coordinated by the Profilin (PFN) protein. PFN is a small, cytosolic protein whose molecular weight is around 14-17 kDa. Originally, PFN was identified as an actin-binding protein that regulates actin dynamics. However, several studies later reported that the interaction of PFN with certain cytosolic proteins has a role in membrane trafficking, development, motility, and signaling. Additionally, the alternatively spliced PFN isoforms are present in different tissues and govern neurological and developmental functions. A mutation in these isoforms can result in abnormalities in the functioning. These isoforms interact with different ligands with certain specificity. However, the structural and functional biology of these isoforms is still under investigation. This review comprehensively discusses the roles of PFN and its isoforms across diverse species, spanning prokaryotes, eukaryotes, and viruses. Future research efforts are crucial for elucidating novel aspects and enhancing our understanding of the molecular mechanisms governed by PFN and its isoforms.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Profilin and Its Isoforms: Unravelling the Functional Diversity Across Life Forms.\",\"authors\":\"Nupur Pathak, V Kohila\",\"doi\":\"10.2174/0113892037390621250901052506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamic nature of the cell wall or plasma membrane is extremely important for the various cellular functions. The rearrangement of the cytoskeleton within the cell is a crucial process that is coordinated by the Profilin (PFN) protein. PFN is a small, cytosolic protein whose molecular weight is around 14-17 kDa. Originally, PFN was identified as an actin-binding protein that regulates actin dynamics. However, several studies later reported that the interaction of PFN with certain cytosolic proteins has a role in membrane trafficking, development, motility, and signaling. Additionally, the alternatively spliced PFN isoforms are present in different tissues and govern neurological and developmental functions. A mutation in these isoforms can result in abnormalities in the functioning. These isoforms interact with different ligands with certain specificity. However, the structural and functional biology of these isoforms is still under investigation. This review comprehensively discusses the roles of PFN and its isoforms across diverse species, spanning prokaryotes, eukaryotes, and viruses. Future research efforts are crucial for elucidating novel aspects and enhancing our understanding of the molecular mechanisms governed by PFN and its isoforms.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037390621250901052506\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037390621250901052506","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Profilin and Its Isoforms: Unravelling the Functional Diversity Across Life Forms.
The dynamic nature of the cell wall or plasma membrane is extremely important for the various cellular functions. The rearrangement of the cytoskeleton within the cell is a crucial process that is coordinated by the Profilin (PFN) protein. PFN is a small, cytosolic protein whose molecular weight is around 14-17 kDa. Originally, PFN was identified as an actin-binding protein that regulates actin dynamics. However, several studies later reported that the interaction of PFN with certain cytosolic proteins has a role in membrane trafficking, development, motility, and signaling. Additionally, the alternatively spliced PFN isoforms are present in different tissues and govern neurological and developmental functions. A mutation in these isoforms can result in abnormalities in the functioning. These isoforms interact with different ligands with certain specificity. However, the structural and functional biology of these isoforms is still under investigation. This review comprehensively discusses the roles of PFN and its isoforms across diverse species, spanning prokaryotes, eukaryotes, and viruses. Future research efforts are crucial for elucidating novel aspects and enhancing our understanding of the molecular mechanisms governed by PFN and its isoforms.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.