{"title":"羊水中的蛋白质成分可增强角质形成细胞分化相关蛋白的表达。","authors":"Tokuji Tsuji, Mao Ohashi, Rikuto Imai, Yusuke Kawaguchi, Hisateru Yamaguchi, Shuichi Matsuyama, Sho Nakamura, Satoshi Ohkura, Kiyotaka Hitomi","doi":"10.1093/bbb/zbaf138","DOIUrl":null,"url":null,"abstract":"<p><p>Amniotic fluid (AF) constitutes a dynamic environment containing diverse bioactive molecules derived from both maternal and fetal sources that support fetal development. As the fetus develops in continuous contact with AF, it is plausible that AF influences the formation of the skin epidermis. However, the mechanisms through which AF promotes keratinocyte differentiation remain largely unclear. Here, we showed that goat AF enhanced the expression of key functional proteins involved in epidermal barrier formation, including small proline-rich proteins, loricrin, and transglutaminase. We further obtained the bioactive fractions that promote the expression of these differentiation-related proteins through multistep protein fractionation via column chromatography. Proteomic analysis subsequently revealed 291 candidate proteins, including 85 distinct extracellular proteins, primarily grouped into calcium-binding proteins, proteases and their regulators, extracellular matrix components, and signaling molecules. Collectively, these results suggest that proteins secreted or released into AF contribute to establishing a microenvironment conducive to epidermal differentiation.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteinaceous components in goat amniotic fluid enhance the expression of keratinocyte differentiation-related proteins.\",\"authors\":\"Tokuji Tsuji, Mao Ohashi, Rikuto Imai, Yusuke Kawaguchi, Hisateru Yamaguchi, Shuichi Matsuyama, Sho Nakamura, Satoshi Ohkura, Kiyotaka Hitomi\",\"doi\":\"10.1093/bbb/zbaf138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amniotic fluid (AF) constitutes a dynamic environment containing diverse bioactive molecules derived from both maternal and fetal sources that support fetal development. As the fetus develops in continuous contact with AF, it is plausible that AF influences the formation of the skin epidermis. However, the mechanisms through which AF promotes keratinocyte differentiation remain largely unclear. Here, we showed that goat AF enhanced the expression of key functional proteins involved in epidermal barrier formation, including small proline-rich proteins, loricrin, and transglutaminase. We further obtained the bioactive fractions that promote the expression of these differentiation-related proteins through multistep protein fractionation via column chromatography. Proteomic analysis subsequently revealed 291 candidate proteins, including 85 distinct extracellular proteins, primarily grouped into calcium-binding proteins, proteases and their regulators, extracellular matrix components, and signaling molecules. Collectively, these results suggest that proteins secreted or released into AF contribute to establishing a microenvironment conducive to epidermal differentiation.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbaf138\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf138","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Proteinaceous components in goat amniotic fluid enhance the expression of keratinocyte differentiation-related proteins.
Amniotic fluid (AF) constitutes a dynamic environment containing diverse bioactive molecules derived from both maternal and fetal sources that support fetal development. As the fetus develops in continuous contact with AF, it is plausible that AF influences the formation of the skin epidermis. However, the mechanisms through which AF promotes keratinocyte differentiation remain largely unclear. Here, we showed that goat AF enhanced the expression of key functional proteins involved in epidermal barrier formation, including small proline-rich proteins, loricrin, and transglutaminase. We further obtained the bioactive fractions that promote the expression of these differentiation-related proteins through multistep protein fractionation via column chromatography. Proteomic analysis subsequently revealed 291 candidate proteins, including 85 distinct extracellular proteins, primarily grouped into calcium-binding proteins, proteases and their regulators, extracellular matrix components, and signaling molecules. Collectively, these results suggest that proteins secreted or released into AF contribute to establishing a microenvironment conducive to epidermal differentiation.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).