AMPK调节CA1海马神经元的bk通道电流。

IF 2.2 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ricardo Esquivel-Garcia, Jorge Bravo-Martinez, Karina Bermeo, Isabel Arenas, David E. Garcia
{"title":"AMPK调节CA1海马神经元的bk通道电流。","authors":"Ricardo Esquivel-Garcia,&nbsp;Jorge Bravo-Martinez,&nbsp;Karina Bermeo,&nbsp;Isabel Arenas,&nbsp;David E. Garcia","doi":"10.1016/j.bbagen.2025.130862","DOIUrl":null,"url":null,"abstract":"<div><div>AMP-activated protein kinase (AMPK) is a fundamental energy sensor fine-tuning cellular activity based on ATP availability. On the other hand, BK-channel current is tightly regulated by leptin, which in turn regulates neuronal excitability by modulating ion channels such as the BK-channel. However, this mechanism remains unclear to date. In this work we aimed to determine whether AMPK mediates the leptin regulation on BK-channel. We hypothesized that leptin regulation of BK-channel through AMPK underlies the modulating changes in neuronal excitability of CA1 hippocampal neurons. By using patch-clamping methods on CA1 pyramidal neurons in brain slices and biochemical reagents, we found that AMPK activation with AICAR inhibits BK-channel current, while AMPK inhibition with Compound C enhances BK-channel activity. Remarkably, AMPK activation reverses BK-channel current enhanced by leptin supporting an AMPK-dependent metabolic regulation of BK. Accordingly, current-clamp experiments revealed that AMPK manipulations significantly affect leptin responses on CA1 neuronal firing. These results support AMPK as a key mediator of the interplay between leptin and neuronal excitability, readily integrating metabolic signals with the computing state of firing outputs in CA1 hippocampal neurons.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 12","pages":"Article 130862"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMPK regulates BK-channel current in CA1 hippocampal neurons\",\"authors\":\"Ricardo Esquivel-Garcia,&nbsp;Jorge Bravo-Martinez,&nbsp;Karina Bermeo,&nbsp;Isabel Arenas,&nbsp;David E. Garcia\",\"doi\":\"10.1016/j.bbagen.2025.130862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>AMP-activated protein kinase (AMPK) is a fundamental energy sensor fine-tuning cellular activity based on ATP availability. On the other hand, BK-channel current is tightly regulated by leptin, which in turn regulates neuronal excitability by modulating ion channels such as the BK-channel. However, this mechanism remains unclear to date. In this work we aimed to determine whether AMPK mediates the leptin regulation on BK-channel. We hypothesized that leptin regulation of BK-channel through AMPK underlies the modulating changes in neuronal excitability of CA1 hippocampal neurons. By using patch-clamping methods on CA1 pyramidal neurons in brain slices and biochemical reagents, we found that AMPK activation with AICAR inhibits BK-channel current, while AMPK inhibition with Compound C enhances BK-channel activity. Remarkably, AMPK activation reverses BK-channel current enhanced by leptin supporting an AMPK-dependent metabolic regulation of BK. Accordingly, current-clamp experiments revealed that AMPK manipulations significantly affect leptin responses on CA1 neuronal firing. These results support AMPK as a key mediator of the interplay between leptin and neuronal excitability, readily integrating metabolic signals with the computing state of firing outputs in CA1 hippocampal neurons.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\"1869 12\",\"pages\":\"Article 130862\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416525001072\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525001072","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

ATP活化蛋白激酶(AMPK)是一种基于ATP可用性微调细胞活性的基本能量传感器。另一方面,bk通道电流受到瘦素的严格调节,瘦素反过来通过调节离子通道(如bk通道)来调节神经元的兴奋性。然而,这一机制至今仍不清楚。在这项工作中,我们旨在确定AMPK是否介导瘦素对bk通道的调节。我们假设瘦素通过AMPK调控bk通道是CA1海马神经元兴奋性调节变化的基础。通过脑切片CA1锥体神经元的膜片箝位方法和生化试剂,我们发现用AICAR激活AMPK可抑制bk通道电流,而用化合物C抑制AMPK可增强bk通道活性。值得注意的是,AMPK激活逆转了瘦素增强的BK通道电流,支持AMPK依赖性的BK代谢调节。因此,电流钳实验显示,AMPK操作显著影响瘦素对CA1神经元放电的反应。这些结果支持AMPK作为瘦素和神经元兴奋性之间相互作用的关键中介,容易将代谢信号与CA1海马神经元放电输出的计算状态整合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AMPK regulates BK-channel current in CA1 hippocampal neurons

AMPK regulates BK-channel current in CA1 hippocampal neurons
AMP-activated protein kinase (AMPK) is a fundamental energy sensor fine-tuning cellular activity based on ATP availability. On the other hand, BK-channel current is tightly regulated by leptin, which in turn regulates neuronal excitability by modulating ion channels such as the BK-channel. However, this mechanism remains unclear to date. In this work we aimed to determine whether AMPK mediates the leptin regulation on BK-channel. We hypothesized that leptin regulation of BK-channel through AMPK underlies the modulating changes in neuronal excitability of CA1 hippocampal neurons. By using patch-clamping methods on CA1 pyramidal neurons in brain slices and biochemical reagents, we found that AMPK activation with AICAR inhibits BK-channel current, while AMPK inhibition with Compound C enhances BK-channel activity. Remarkably, AMPK activation reverses BK-channel current enhanced by leptin supporting an AMPK-dependent metabolic regulation of BK. Accordingly, current-clamp experiments revealed that AMPK manipulations significantly affect leptin responses on CA1 neuronal firing. These results support AMPK as a key mediator of the interplay between leptin and neuronal excitability, readily integrating metabolic signals with the computing state of firing outputs in CA1 hippocampal neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信