用扫描电子衍射研究太阳能电池吸收体的局部晶体学。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Andrea Griesi, Yurii P Ivanov, Simon M Fairclough, Arivazhagan Valluvar Oli, Gunnar Kusch, Rachel A Oliver, Paola De Padova, Carlo Ottaviani, Udari Wijesinghe, Susanne Siebentritt, Aldo Di Carlo, Oliver S Hutter, Giulia Longo, Giorgio Divitini
{"title":"用扫描电子衍射研究太阳能电池吸收体的局部晶体学。","authors":"Andrea Griesi, Yurii P Ivanov, Simon M Fairclough, Arivazhagan Valluvar Oli, Gunnar Kusch, Rachel A Oliver, Paola De Padova, Carlo Ottaviani, Udari Wijesinghe, Susanne Siebentritt, Aldo Di Carlo, Oliver S Hutter, Giulia Longo, Giorgio Divitini","doi":"10.1002/smtd.202501334","DOIUrl":null,"url":null,"abstract":"<p><p>In thin film photovoltaic devices, the control of grain structure and local crystallography are fundamental for high power conversion efficiency and reliable long-term operation. Structural defects, grain boundaries, and unwanted phases can stem from compositional inhomogeneities or from specific synthesis parameters, and they need to be thoroughly understood and carefully engineered. However, comprehensive studies of the crystallographic properties of complex systems, including different phases and/or a large number of grains, are often prohibitively challenging. Here, the use of 4D Scanning Transmission Electron Microscopy (4D-STEM) is demonstrated on cross-sections to unravel the nanoscale properties of three different materials for photovoltaics: Cu(In,Ga)S<sub>2</sub>, halide perovskite, and Sb<sub>2</sub>Se<sub>3</sub>. These materials are chosen because of the variety of challenges they present: the presence of multiple phases and complex stoichiometry, electron beam sensitivity, and very high density of grains. 4D-STEM provides comprehensive insights into crystallinity and microstructure, but navigating its large datasets and extracting actionable, statistically sound information requires advanced algorithms. How unsupervised machine learning, including dimensionality reduction and hierarchical clustering, can extract key information from 4D-STEM datasets is demonstrated. The analytical framework follows FAIR principles, employing open-source software and enabling data sharing.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01334"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Local Crystallography in Solar Cell Absorbers with Scanning Electron Diffraction.\",\"authors\":\"Andrea Griesi, Yurii P Ivanov, Simon M Fairclough, Arivazhagan Valluvar Oli, Gunnar Kusch, Rachel A Oliver, Paola De Padova, Carlo Ottaviani, Udari Wijesinghe, Susanne Siebentritt, Aldo Di Carlo, Oliver S Hutter, Giulia Longo, Giorgio Divitini\",\"doi\":\"10.1002/smtd.202501334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In thin film photovoltaic devices, the control of grain structure and local crystallography are fundamental for high power conversion efficiency and reliable long-term operation. Structural defects, grain boundaries, and unwanted phases can stem from compositional inhomogeneities or from specific synthesis parameters, and they need to be thoroughly understood and carefully engineered. However, comprehensive studies of the crystallographic properties of complex systems, including different phases and/or a large number of grains, are often prohibitively challenging. Here, the use of 4D Scanning Transmission Electron Microscopy (4D-STEM) is demonstrated on cross-sections to unravel the nanoscale properties of three different materials for photovoltaics: Cu(In,Ga)S<sub>2</sub>, halide perovskite, and Sb<sub>2</sub>Se<sub>3</sub>. These materials are chosen because of the variety of challenges they present: the presence of multiple phases and complex stoichiometry, electron beam sensitivity, and very high density of grains. 4D-STEM provides comprehensive insights into crystallinity and microstructure, but navigating its large datasets and extracting actionable, statistically sound information requires advanced algorithms. How unsupervised machine learning, including dimensionality reduction and hierarchical clustering, can extract key information from 4D-STEM datasets is demonstrated. The analytical framework follows FAIR principles, employing open-source software and enabling data sharing.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01334\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501334\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501334","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在薄膜光伏器件中,晶粒结构和局部晶体学的控制是实现高功率转换效率和长期可靠运行的基础。结构缺陷、晶界和不需要的相可能源于成分的不均匀性或特定的合成参数,它们需要被彻底地理解和仔细地设计。然而,包括不同相和/或大量晶粒在内的复杂体系的晶体学性质的综合研究往往具有令人望而却步的挑战性。在这里,利用4D扫描透射电子显微镜(4D- stem)在横截面上展示了三种不同光伏材料的纳米级性质:Cu(In,Ga)S2,卤化物钙钛矿和Sb2Se3。选择这些材料是因为它们面临着各种各样的挑战:多相和复杂的化学计量、电子束灵敏度和非常高的颗粒密度。4D-STEM提供了对结晶度和微观结构的全面洞察,但导航其庞大的数据集并提取可操作的、统计上合理的信息需要先进的算法。演示了无监督机器学习(包括降维和分层聚类)如何从4D-STEM数据集中提取关键信息。分析框架遵循FAIR原则,采用开源软件并实现数据共享。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Local Crystallography in Solar Cell Absorbers with Scanning Electron Diffraction.

In thin film photovoltaic devices, the control of grain structure and local crystallography are fundamental for high power conversion efficiency and reliable long-term operation. Structural defects, grain boundaries, and unwanted phases can stem from compositional inhomogeneities or from specific synthesis parameters, and they need to be thoroughly understood and carefully engineered. However, comprehensive studies of the crystallographic properties of complex systems, including different phases and/or a large number of grains, are often prohibitively challenging. Here, the use of 4D Scanning Transmission Electron Microscopy (4D-STEM) is demonstrated on cross-sections to unravel the nanoscale properties of three different materials for photovoltaics: Cu(In,Ga)S2, halide perovskite, and Sb2Se3. These materials are chosen because of the variety of challenges they present: the presence of multiple phases and complex stoichiometry, electron beam sensitivity, and very high density of grains. 4D-STEM provides comprehensive insights into crystallinity and microstructure, but navigating its large datasets and extracting actionable, statistically sound information requires advanced algorithms. How unsupervised machine learning, including dimensionality reduction and hierarchical clustering, can extract key information from 4D-STEM datasets is demonstrated. The analytical framework follows FAIR principles, employing open-source software and enabling data sharing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信