大孔、中孔和微孔UiO-66的高效催化合成。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ziwen Li, Xiaolong Fang, Yao Yao, Ganggang Chang, Hongjian Xu, Li Mei, Chao Liu, Ge Tian, Xiaoyu Yang
{"title":"大孔、中孔和微孔UiO-66的高效催化合成。","authors":"Ziwen Li, Xiaolong Fang, Yao Yao, Ganggang Chang, Hongjian Xu, Li Mei, Chao Liu, Ge Tian, Xiaoyu Yang","doi":"10.1002/smtd.202501096","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the controllable synthesis of hierarchically porous metal-organic frameworks (HP-MOFs) has received significant attention. However, most synthesized HP-MOFs are primarily adjusted in terms of second-order porosity, and the simultaneous control of mesopore and macropore sizes in HP-MOFs remains difficult to attain. Herein, for the first time, HP-UiO-66-NH<sub>2</sub> is successfully synthesized with simultaneously controllable macro-, meso-, and micropores (MMM-UiO-66-NH<sub>2</sub>) by combining the hard template methods and the water-acid competitive nucleation strategy. Impressively, the innovative introduction of a water-acid system can effectively slow down the dissolution of polystyrene (PS) microspheres, ultimately achieving simultaneous regulation of macropore sizes in the range of 160-400 nm and mesopore sizes in the range of 3.9-10.3 nm. Meanwhile, this method can be extended to other UiO-66 series. The hierarchically macro-, meso-, and microporous structure provides sufficient accessibility to substrate molecules and enables rapid mass transfer, contributing to the highest Knoevenagel condensation reaction performance. Furthermore, the MMM-UiO-66-NH<sub>2</sub> is used as an anchoring carrier to bind the bulky phosphomolybdic acid (PMA) through the strong host-guest interaction, endowing it with excellent catalytic oxidative desulfurization (ODS) performance. This study has developed an effective synthetic strategy for preparing HP-MOFs and further expanded the application of HP-MOFs in macromolecular-related catalysis.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01096"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable Synthesis of Hierarchically Macro-, Meso-, and Microporous UiO-66 for Efficient Catalysis.\",\"authors\":\"Ziwen Li, Xiaolong Fang, Yao Yao, Ganggang Chang, Hongjian Xu, Li Mei, Chao Liu, Ge Tian, Xiaoyu Yang\",\"doi\":\"10.1002/smtd.202501096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the controllable synthesis of hierarchically porous metal-organic frameworks (HP-MOFs) has received significant attention. However, most synthesized HP-MOFs are primarily adjusted in terms of second-order porosity, and the simultaneous control of mesopore and macropore sizes in HP-MOFs remains difficult to attain. Herein, for the first time, HP-UiO-66-NH<sub>2</sub> is successfully synthesized with simultaneously controllable macro-, meso-, and micropores (MMM-UiO-66-NH<sub>2</sub>) by combining the hard template methods and the water-acid competitive nucleation strategy. Impressively, the innovative introduction of a water-acid system can effectively slow down the dissolution of polystyrene (PS) microspheres, ultimately achieving simultaneous regulation of macropore sizes in the range of 160-400 nm and mesopore sizes in the range of 3.9-10.3 nm. Meanwhile, this method can be extended to other UiO-66 series. The hierarchically macro-, meso-, and microporous structure provides sufficient accessibility to substrate molecules and enables rapid mass transfer, contributing to the highest Knoevenagel condensation reaction performance. Furthermore, the MMM-UiO-66-NH<sub>2</sub> is used as an anchoring carrier to bind the bulky phosphomolybdic acid (PMA) through the strong host-guest interaction, endowing it with excellent catalytic oxidative desulfurization (ODS) performance. This study has developed an effective synthetic strategy for preparing HP-MOFs and further expanded the application of HP-MOFs in macromolecular-related catalysis.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01096\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501096\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501096","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,分层多孔金属有机骨架(HP-MOFs)的可控合成备受关注。然而,大多数合成的hp - mof主要是根据二级孔隙度进行调整,并且hp - mof的中孔和大孔尺寸的同时控制仍然很难实现。本文首次结合硬模板法和水-酸竞争成核策略,成功合成了具有宏、中、微孔同时可控的HP-UiO-66-NH2 (mm - uio -66- nh2)。令人印象深刻的是,创新引入的水-酸体系可以有效减缓聚苯乙烯(PS)微球的溶解,最终实现160-400 nm的大孔尺寸和3.9-10.3 nm的中孔尺寸的同时调节。同时,该方法也可推广到其他UiO-66系列。宏观、介孔和微孔结构为底物分子提供了足够的可接近性,并实现了快速的传质,有助于实现最高的Knoevenagel缩合反应性能。此外,MMM-UiO-66-NH2作为锚定载体,通过强主客体相互作用结合体积较大的磷酸钼酸(PMA),使其具有优异的催化氧化脱硫(ODS)性能。本研究为制备hp - mof提供了一种有效的合成策略,进一步拓展了hp - mof在大分子催化方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable Synthesis of Hierarchically Macro-, Meso-, and Microporous UiO-66 for Efficient Catalysis.

In recent years, the controllable synthesis of hierarchically porous metal-organic frameworks (HP-MOFs) has received significant attention. However, most synthesized HP-MOFs are primarily adjusted in terms of second-order porosity, and the simultaneous control of mesopore and macropore sizes in HP-MOFs remains difficult to attain. Herein, for the first time, HP-UiO-66-NH2 is successfully synthesized with simultaneously controllable macro-, meso-, and micropores (MMM-UiO-66-NH2) by combining the hard template methods and the water-acid competitive nucleation strategy. Impressively, the innovative introduction of a water-acid system can effectively slow down the dissolution of polystyrene (PS) microspheres, ultimately achieving simultaneous regulation of macropore sizes in the range of 160-400 nm and mesopore sizes in the range of 3.9-10.3 nm. Meanwhile, this method can be extended to other UiO-66 series. The hierarchically macro-, meso-, and microporous structure provides sufficient accessibility to substrate molecules and enables rapid mass transfer, contributing to the highest Knoevenagel condensation reaction performance. Furthermore, the MMM-UiO-66-NH2 is used as an anchoring carrier to bind the bulky phosphomolybdic acid (PMA) through the strong host-guest interaction, endowing it with excellent catalytic oxidative desulfurization (ODS) performance. This study has developed an effective synthetic strategy for preparing HP-MOFs and further expanded the application of HP-MOFs in macromolecular-related catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信