聚金属氧酸亚胺连接分子,共价有机聚合物和框架:对超级电容器性能的维度影响

IF 6.1 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Daria Nowicka, Verónica Montes-García, Aleksandra Sikora, Violetta Patroniak, Adam Gorczyński, Dawid Pakulski, Artur Ciesielski
{"title":"聚金属氧酸亚胺连接分子,共价有机聚合物和框架:对超级电容器性能的维度影响","authors":"Daria Nowicka,&nbsp;Verónica Montes-García,&nbsp;Aleksandra Sikora,&nbsp;Violetta Patroniak,&nbsp;Adam Gorczyński,&nbsp;Dawid Pakulski,&nbsp;Artur Ciesielski","doi":"10.1002/adsu.202500356","DOIUrl":null,"url":null,"abstract":"<p>Efficient and durable energy storage materials are essential to meet the increasing demand for renewable energy technologies. However, existing materials often encounter trade-offs among energy density, power density, and cycling stability. To overcome these limitations, a 2D imide-linked polyoxometalate-covalent organic framework (i-POCOF) is introduced. This hybrid material combines the redox activity of polyoxometalates (POMs) with the structural adaptability of covalent organic frameworks (COFs). Complementarily, 0D imide-functionalized POM-molecule and 1D POM-polymer systems are investigated, enabling a systematic evaluation of how dimensionality affects their physicochemical properties and electrochemical performance. By increasing dimensionality, the hybrids exhibit improved surface area ranging from 107 m<sup>2</sup> g<sup>−1</sup> for 0D to 257 m<sup>2</sup> g<sup>−1</sup> for 2D, and optimized porosity (average pore size from 1.9 nm for 0D to 3.7 nm for 2D), resulting in enhanced ion diffusion and charge transport. In particular, 2D i-POCOF exhibits remarkable electrochemical performance, achieving a specific capacitance of 132 F g<sup>−1</sup>, energy density of 73.3 Wh kg<sup>−1</sup>, and power density of 0.9 kW kg<sup>−1</sup>, with only 6% capacitance loss after 5000 cycles. These findings highlight the potential of POM hybrids as high-performance and stable energy storage hybrids, providing a promising pathway to overcome current limitations in electrode materials.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 9","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202500356","citationCount":"0","resultStr":"{\"title\":\"Polyoxometalate Imide-Linked Molecules, Covalent Organic Polymers, and Frameworks: Dimensionality Effects on Supercapacitors Performance\",\"authors\":\"Daria Nowicka,&nbsp;Verónica Montes-García,&nbsp;Aleksandra Sikora,&nbsp;Violetta Patroniak,&nbsp;Adam Gorczyński,&nbsp;Dawid Pakulski,&nbsp;Artur Ciesielski\",\"doi\":\"10.1002/adsu.202500356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient and durable energy storage materials are essential to meet the increasing demand for renewable energy technologies. However, existing materials often encounter trade-offs among energy density, power density, and cycling stability. To overcome these limitations, a 2D imide-linked polyoxometalate-covalent organic framework (i-POCOF) is introduced. This hybrid material combines the redox activity of polyoxometalates (POMs) with the structural adaptability of covalent organic frameworks (COFs). Complementarily, 0D imide-functionalized POM-molecule and 1D POM-polymer systems are investigated, enabling a systematic evaluation of how dimensionality affects their physicochemical properties and electrochemical performance. By increasing dimensionality, the hybrids exhibit improved surface area ranging from 107 m<sup>2</sup> g<sup>−1</sup> for 0D to 257 m<sup>2</sup> g<sup>−1</sup> for 2D, and optimized porosity (average pore size from 1.9 nm for 0D to 3.7 nm for 2D), resulting in enhanced ion diffusion and charge transport. In particular, 2D i-POCOF exhibits remarkable electrochemical performance, achieving a specific capacitance of 132 F g<sup>−1</sup>, energy density of 73.3 Wh kg<sup>−1</sup>, and power density of 0.9 kW kg<sup>−1</sup>, with only 6% capacitance loss after 5000 cycles. These findings highlight the potential of POM hybrids as high-performance and stable energy storage hybrids, providing a promising pathway to overcome current limitations in electrode materials.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202500356\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500356\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500356","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高效、耐用的储能材料对于满足日益增长的可再生能源技术需求至关重要。然而,现有的材料经常遇到能量密度、功率密度和循环稳定性之间的权衡。为了克服这些限制,引入了二维亚胺连接的多金属氧酸共价有机骨架(i-POCOF)。这种杂化材料结合了多金属氧酸盐(pom)的氧化还原活性和共价有机框架(COFs)的结构适应性。此外,还研究了0D酰亚胺功能化的pom分子和1D pom聚合物体系,从而系统地评估了维度如何影响它们的物理化学性质和电化学性能。通过增加维数,杂化材料的表面积从0D的107 m2 g−1增加到2D的257 m2 g−1,并且优化了孔隙率(平均孔径从0D的1.9 nm增加到2D的3.7 nm),从而增强了离子扩散和电荷输运。特别是,2D i-POCOF具有显著的电化学性能,比电容为132 F g−1,能量密度为73.3 Wh kg−1,功率密度为0.9 kW kg−1,循环5000次后电容损失仅为6%。这些发现突出了POM混合材料作为高性能和稳定的储能混合材料的潜力,为克服电极材料的电流限制提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polyoxometalate Imide-Linked Molecules, Covalent Organic Polymers, and Frameworks: Dimensionality Effects on Supercapacitors Performance

Polyoxometalate Imide-Linked Molecules, Covalent Organic Polymers, and Frameworks: Dimensionality Effects on Supercapacitors Performance

Efficient and durable energy storage materials are essential to meet the increasing demand for renewable energy technologies. However, existing materials often encounter trade-offs among energy density, power density, and cycling stability. To overcome these limitations, a 2D imide-linked polyoxometalate-covalent organic framework (i-POCOF) is introduced. This hybrid material combines the redox activity of polyoxometalates (POMs) with the structural adaptability of covalent organic frameworks (COFs). Complementarily, 0D imide-functionalized POM-molecule and 1D POM-polymer systems are investigated, enabling a systematic evaluation of how dimensionality affects their physicochemical properties and electrochemical performance. By increasing dimensionality, the hybrids exhibit improved surface area ranging from 107 m2 g−1 for 0D to 257 m2 g−1 for 2D, and optimized porosity (average pore size from 1.9 nm for 0D to 3.7 nm for 2D), resulting in enhanced ion diffusion and charge transport. In particular, 2D i-POCOF exhibits remarkable electrochemical performance, achieving a specific capacitance of 132 F g−1, energy density of 73.3 Wh kg−1, and power density of 0.9 kW kg−1, with only 6% capacitance loss after 5000 cycles. These findings highlight the potential of POM hybrids as high-performance and stable energy storage hybrids, providing a promising pathway to overcome current limitations in electrode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信