混合金属氧化物对氧还原过程中H2O2的抑制作用

IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-07-27 DOI:10.1002/cctc.202500886
Sekhar Kumar Biswal, Chinmoy Ranjan
{"title":"混合金属氧化物对氧还原过程中H2O2的抑制作用","authors":"Sekhar Kumar Biswal,&nbsp;Chinmoy Ranjan","doi":"10.1002/cctc.202500886","DOIUrl":null,"url":null,"abstract":"<p>The development of efficient and selective oxygen reduction reaction (ORR) catalysts is central to advancing electrochemical energy technologies. While platinum remains the benchmark, its high cost, peroxide selectivity, and durability issues demand alternatives. Transition metal oxides (TMOs) are promising in alkaline media, yet their ORR activity is hampered by weak oxygen binding and high activation barriers. This concept article introduces a coordination mismatch strategy to enhance ORR performance in mixed-metal oxides, specifically Cu[M]O<sub>x</sub> (M═Co, Ni, Fe, Mn). By combining metals with differing oxygen coordination preferences, Cu<sup>2+</sup> (four-fold) and M<sup>n+</sup> (typically six-fold), local lattice strain and undercoordinated sites are introduced, enhancing O<sub>2</sub> adsorption and O─O bond cleavage. Cu-rich compositions, especially Cu<sub>0.8</sub>Co<sub>0.2</sub>O<sub>x</sub>/Au, demonstrate high ORR activity, low H<sub>2</sub>O<sub>2</sub> yield, and excellent stability. In situ Raman spectroscopy confirms stable M─O─Cu frameworks and redox-active Cu centers. The approach is validated across multiple dopants and supported by DFT studies showing stabilized OOH* intermediates and favorable energetics. These findings demonstrate that coordination engineering is a powerful strategy for designing efficient, selective, and robust nonprecious metal catalysts for electrochemical energy conversion.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 15","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H2O2 Suppression During Oxygen Reduction Using Mixed Metal Oxides\",\"authors\":\"Sekhar Kumar Biswal,&nbsp;Chinmoy Ranjan\",\"doi\":\"10.1002/cctc.202500886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of efficient and selective oxygen reduction reaction (ORR) catalysts is central to advancing electrochemical energy technologies. While platinum remains the benchmark, its high cost, peroxide selectivity, and durability issues demand alternatives. Transition metal oxides (TMOs) are promising in alkaline media, yet their ORR activity is hampered by weak oxygen binding and high activation barriers. This concept article introduces a coordination mismatch strategy to enhance ORR performance in mixed-metal oxides, specifically Cu[M]O<sub>x</sub> (M═Co, Ni, Fe, Mn). By combining metals with differing oxygen coordination preferences, Cu<sup>2+</sup> (four-fold) and M<sup>n+</sup> (typically six-fold), local lattice strain and undercoordinated sites are introduced, enhancing O<sub>2</sub> adsorption and O─O bond cleavage. Cu-rich compositions, especially Cu<sub>0.8</sub>Co<sub>0.2</sub>O<sub>x</sub>/Au, demonstrate high ORR activity, low H<sub>2</sub>O<sub>2</sub> yield, and excellent stability. In situ Raman spectroscopy confirms stable M─O─Cu frameworks and redox-active Cu centers. The approach is validated across multiple dopants and supported by DFT studies showing stabilized OOH* intermediates and favorable energetics. These findings demonstrate that coordination engineering is a powerful strategy for designing efficient, selective, and robust nonprecious metal catalysts for electrochemical energy conversion.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 15\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500886\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500886","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效、选择性氧还原反应催化剂的开发是推进电化学能源技术的核心。虽然铂金仍然是基准,但其高成本,过氧化选择性和耐用性问题需要替代品。过渡金属氧化物(TMOs)在碱性介质中具有广阔的应用前景,但其ORR活性受到弱氧结合和高激活障碍的限制。这篇概念文章介绍了一种配位失配策略来提高混合金属氧化物中的ORR性能,特别是Cu[M]Ox (M = Co, Ni, Fe, Mn)。通过结合具有不同氧配位偏好的金属,Cu2+(4倍)和Mn+(通常为6倍),引入了局部晶格应变和欠配位位点,增强了O2吸附和O─O键的裂解。富cu组分,特别是Cu0.8Co0.2Ox/Au,具有较高的ORR活性、较低的H2O2产率和良好的稳定性。原位拉曼光谱证实了稳定的M─O─Cu框架和氧化还原活性Cu中心。该方法在多种掺杂剂中得到了验证,并得到了DFT研究的支持,显示出稳定的OOH*中间体和有利的能量学。这些发现表明,配位工程是设计高效、选择性和鲁棒性的非贵金属电化学能量转换催化剂的有力策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

H2O2 Suppression During Oxygen Reduction Using Mixed Metal Oxides

H2O2 Suppression During Oxygen Reduction Using Mixed Metal Oxides

H2O2 Suppression During Oxygen Reduction Using Mixed Metal Oxides

H2O2 Suppression During Oxygen Reduction Using Mixed Metal Oxides

The development of efficient and selective oxygen reduction reaction (ORR) catalysts is central to advancing electrochemical energy technologies. While platinum remains the benchmark, its high cost, peroxide selectivity, and durability issues demand alternatives. Transition metal oxides (TMOs) are promising in alkaline media, yet their ORR activity is hampered by weak oxygen binding and high activation barriers. This concept article introduces a coordination mismatch strategy to enhance ORR performance in mixed-metal oxides, specifically Cu[M]Ox (M═Co, Ni, Fe, Mn). By combining metals with differing oxygen coordination preferences, Cu2+ (four-fold) and Mn+ (typically six-fold), local lattice strain and undercoordinated sites are introduced, enhancing O2 adsorption and O─O bond cleavage. Cu-rich compositions, especially Cu0.8Co0.2Ox/Au, demonstrate high ORR activity, low H2O2 yield, and excellent stability. In situ Raman spectroscopy confirms stable M─O─Cu frameworks and redox-active Cu centers. The approach is validated across multiple dopants and supported by DFT studies showing stabilized OOH* intermediates and favorable energetics. These findings demonstrate that coordination engineering is a powerful strategy for designing efficient, selective, and robust nonprecious metal catalysts for electrochemical energy conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信