罗马尼亚克卢日-纳波卡地区甲烷来源:同位素分析的启示

IF 3.4 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Jacoline van Es, Carina van der Veen, Calin Baciu, Mustafa Hmoudah, Malika Menoud, Stephan Henne, Thomas Röckmann
{"title":"罗马尼亚克卢日-纳波卡地区甲烷来源:同位素分析的启示","authors":"Jacoline van Es,&nbsp;Carina van der Veen,&nbsp;Calin Baciu,&nbsp;Mustafa Hmoudah,&nbsp;Malika Menoud,&nbsp;Stephan Henne,&nbsp;Thomas Röckmann","doi":"10.1029/2024JD043015","DOIUrl":null,"url":null,"abstract":"<p>Increased emissions of methane (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math>) have contributed 0.3–0.8°C to global temperature rise since preindustrial times. Reducing these emissions is crucial to mitigate climate change. Measurements of the isotopic composition of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n </mrow>\n <annotation> $\\delta $</annotation>\n </semantics></math><sup>13</sup>C and <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n </mrow>\n <annotation> $\\delta $</annotation>\n </semantics></math><sup>2</sup>H) can be used to distinguish various sources of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math>. This study reports continuous measurements of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n </mrow>\n <annotation> $\\delta $</annotation>\n </semantics></math><sup>13</sup>C and <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n </mrow>\n <annotation> $\\delta $</annotation>\n </semantics></math><sup>2</sup>H for 8 months in Cluj-Napoca, Romania. An automated extraction and a purification system, coupled to an isotope ratio mass spectrometer alternately measured <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n </mrow>\n <annotation> $\\delta $</annotation>\n </semantics></math><sup>13</sup>C and <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n </mrow>\n <annotation> $\\delta $</annotation>\n </semantics></math><sup>2</sup>H of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math> with 20-min time resolution at the campus of the Babeş-Bolyai University. In addition, point source samples were measured to isotopically characterize <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math> sources in the region. The time series show regular <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math> elevations during the night, occasionally superimposed on multiday events. From these elevations, we identified three main <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math> emission categories: Transylvanian biogenic gas (75%); biogenic emissions from rivers and wastewater (38%), predominantly observed during the summer; and a third source emitting <sup>13</sup>C-enriched <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math> in winter, likely of pyrogenic origin (5%). We simulated the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math> mole fraction at the measurement site using Lagrangian footprints generated from the FLEXPART-COSMO model convolved with emissions from the TNO-CoCO2 inventory. The simulations show that the emission inventory is not granular enough to represent the city center. The strong underestimation in winter suggests that the emission inventory did not include the pyrogenic winter source. When the model accurately estimated the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CH</mtext>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CH}}_{4}$</annotation>\n </semantics></math> mole fraction, it also predicted the isotopic compositions well.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 18","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD043015","citationCount":"0","resultStr":"{\"title\":\"Methane Sources in Cluj-Napoca, Romania: Insights From Isotopic Analysis\",\"authors\":\"Jacoline van Es,&nbsp;Carina van der Veen,&nbsp;Calin Baciu,&nbsp;Mustafa Hmoudah,&nbsp;Malika Menoud,&nbsp;Stephan Henne,&nbsp;Thomas Röckmann\",\"doi\":\"10.1029/2024JD043015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increased emissions of methane (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math>) have contributed 0.3–0.8°C to global temperature rise since preindustrial times. Reducing these emissions is crucial to mitigate climate change. Measurements of the isotopic composition of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n </mrow>\\n <annotation> $\\\\delta $</annotation>\\n </semantics></math><sup>13</sup>C and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n </mrow>\\n <annotation> $\\\\delta $</annotation>\\n </semantics></math><sup>2</sup>H) can be used to distinguish various sources of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math>. This study reports continuous measurements of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n </mrow>\\n <annotation> $\\\\delta $</annotation>\\n </semantics></math><sup>13</sup>C and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n </mrow>\\n <annotation> $\\\\delta $</annotation>\\n </semantics></math><sup>2</sup>H for 8 months in Cluj-Napoca, Romania. An automated extraction and a purification system, coupled to an isotope ratio mass spectrometer alternately measured <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n </mrow>\\n <annotation> $\\\\delta $</annotation>\\n </semantics></math><sup>13</sup>C and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n </mrow>\\n <annotation> $\\\\delta $</annotation>\\n </semantics></math><sup>2</sup>H of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math> with 20-min time resolution at the campus of the Babeş-Bolyai University. In addition, point source samples were measured to isotopically characterize <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math> sources in the region. The time series show regular <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math> elevations during the night, occasionally superimposed on multiday events. From these elevations, we identified three main <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math> emission categories: Transylvanian biogenic gas (75%); biogenic emissions from rivers and wastewater (38%), predominantly observed during the summer; and a third source emitting <sup>13</sup>C-enriched <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math> in winter, likely of pyrogenic origin (5%). We simulated the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math> mole fraction at the measurement site using Lagrangian footprints generated from the FLEXPART-COSMO model convolved with emissions from the TNO-CoCO2 inventory. The simulations show that the emission inventory is not granular enough to represent the city center. The strong underestimation in winter suggests that the emission inventory did not include the pyrogenic winter source. When the model accurately estimated the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CH</mtext>\\n <mn>4</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CH}}_{4}$</annotation>\\n </semantics></math> mole fraction, it also predicted the isotopic compositions well.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"130 18\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD043015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JD043015\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JD043015","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

自前工业化时代以来,甲烷(ch4 ${\text{CH}}_{4}$)排放量的增加使全球气温上升了0.3-0.8°C。减少这些排放对于减缓气候变化至关重要。测量ch4 ${\text{CH}}_{4}$的同位素组成(δ $\delta $ 13C和δ $\delta $ 2H)可用于区分不同来源的ch4 ${\text{CH}}_{4}$。本研究报告连续测量ch4 ${\text{CH}}_{4}$,δ $\delta $ 13C和δ $\delta $ 2H在罗马尼亚的克卢日-纳波卡住了8个月。一个自动提取和净化系统,耦合到同位素比值质谱仪交替测量了ch4 ${\text{CH}}_{4}$的δ $\delta $ 13C和δ $\delta $ 2H20分钟的时间分辨率,在博雅大学的校园里。此外,还对点源样品进行了同位素表征,确定了该区ch4 ${\text{CH}}_{4}$源的同位素特征。时间序列显示夜间有规律的ch4 ${\text{CH}}_{4}$海拔,偶尔会叠加在多日事件上。根据这些海拔高度,我们确定了三个主要的ch4 ${\text{CH}}_{4}$排放类别:特兰西瓦尼亚生物气(75%);来自河流和废水的生物源排放(38%),主要在夏季观测到;第三个源在冬季释放富含13c的ch4 ${\text{CH}}_{4}$,可能是热成因(5%)。我们使用FLEXPART-COSMO模型生成的拉格朗日足迹与TNO-CoCO2清单的排放进行卷积,模拟了测量地点的ch4 ${\text{CH}}_{4}$摩尔分数。模拟结果表明,排放清单粒度不足以代表城市中心。冬季严重低估表明排放清查未包括冬季热源。该模型在准确估计ch4 ${\text{CH}}_{4}$摩尔分数的同时,也很好地预测了同位素组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Methane Sources in Cluj-Napoca, Romania: Insights From Isotopic Analysis

Methane Sources in Cluj-Napoca, Romania: Insights From Isotopic Analysis

Methane Sources in Cluj-Napoca, Romania: Insights From Isotopic Analysis

Methane Sources in Cluj-Napoca, Romania: Insights From Isotopic Analysis

Increased emissions of methane ( CH 4 ${\text{CH}}_{4}$ ) have contributed 0.3–0.8°C to global temperature rise since preindustrial times. Reducing these emissions is crucial to mitigate climate change. Measurements of the isotopic composition of CH 4 ${\text{CH}}_{4}$ ( δ $\delta $ 13C and δ $\delta $ 2H) can be used to distinguish various sources of CH 4 ${\text{CH}}_{4}$ . This study reports continuous measurements of CH 4 ${\text{CH}}_{4}$ , δ $\delta $ 13C and δ $\delta $ 2H for 8 months in Cluj-Napoca, Romania. An automated extraction and a purification system, coupled to an isotope ratio mass spectrometer alternately measured δ $\delta $ 13C and δ $\delta $ 2H of CH 4 ${\text{CH}}_{4}$ with 20-min time resolution at the campus of the Babeş-Bolyai University. In addition, point source samples were measured to isotopically characterize CH 4 ${\text{CH}}_{4}$ sources in the region. The time series show regular CH 4 ${\text{CH}}_{4}$ elevations during the night, occasionally superimposed on multiday events. From these elevations, we identified three main CH 4 ${\text{CH}}_{4}$ emission categories: Transylvanian biogenic gas (75%); biogenic emissions from rivers and wastewater (38%), predominantly observed during the summer; and a third source emitting 13C-enriched CH 4 ${\text{CH}}_{4}$ in winter, likely of pyrogenic origin (5%). We simulated the CH 4 ${\text{CH}}_{4}$ mole fraction at the measurement site using Lagrangian footprints generated from the FLEXPART-COSMO model convolved with emissions from the TNO-CoCO2 inventory. The simulations show that the emission inventory is not granular enough to represent the city center. The strong underestimation in winter suggests that the emission inventory did not include the pyrogenic winter source. When the model accurately estimated the CH 4 ${\text{CH}}_{4}$ mole fraction, it also predicted the isotopic compositions well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信