富氧氮化碳量子点工程钒酸铋光阳极表面实现高效太阳能水氧化

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-08-24 DOI:10.1002/solr.202500526
Ziming Wang, Zhaohui Fang, Jiabin Zhou, Quanjun Xiang
{"title":"富氧氮化碳量子点工程钒酸铋光阳极表面实现高效太阳能水氧化","authors":"Ziming Wang,&nbsp;Zhaohui Fang,&nbsp;Jiabin Zhou,&nbsp;Quanjun Xiang","doi":"10.1002/solr.202500526","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a strategy for passivating intrinsic oxygen vacancies (Ovac) on BiVO<sub>4</sub> photoanodes through surface modification with carbon nitride quantum dots (CNQDs). The BiVO<sub>4</sub>-CNQDs photoanode was fabricated via chemical bath deposition and calcination, achieving significant Ovac suppression without compromising the crystallinity of the BiVO<sub>4</sub> framework. This Ovac reduction critically alters the thermodynamic landscape of water oxidation by modulating intermediate adsorption energetics, steering the reaction pathway toward selective H<sub>2</sub>O<sub>2</sub> generation. The optimized BiVO<sub>4</sub>-CNQDs photoanode demonstrates a 24.91% average Faradaic efficiency (FE) for H<sub>2</sub>O<sub>2</sub> production, representing a 1.38-fold enhancement over the pristine BiVO<sub>4</sub> photoanode. By integrating an In<sub>2</sub>O<sub>3</sub> passivation layer, a BiVO<sub>4</sub>-CNQDs-In<sub>2</sub>O<sub>3</sub> photoanode was formed, and the average FE of H<sub>2</sub>O<sub>2</sub> preparation reached 28.16%, achieving further performance improvement. The generated electrons and holes can be more effectively transferred from BiVO<sub>4</sub> to the In<sub>2</sub>O<sub>3</sub> passivation layer before participating in subsequent electrochemical reactions. This dual modification synergistically promotes the quasi-Fermi level of holes to move toward the anode and reduces band bending, synergistically driving photo generated holes toward the higher oxidation potentials to accelerate the selective conversion of H<sub>2</sub>O to H<sub>2</sub>O<sub>2</sub>. The BiVO<sub>4</sub>-CNQDs-In<sub>2</sub>O<sub>3</sub> photoanode achieves a 1.58-fold improvement in average H<sub>2</sub>O<sub>2</sub> FE within the 1.2–2.4 V versus reversible hydrogen electrode (RHE) range compared to unmodified BiVO<sub>4</sub>. This work establishes an innovative approach for modulating inherent Ovac in BiVO<sub>4</sub> photoanode and optimizing the preparation pathway of H<sub>2</sub>O<sub>2</sub> through the vacancy engineering.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 18","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen-Rich Carbon Nitride Quantum Dots Engineered Bismuth Vanadate Photoanode Surface to Achieve Highly Efficient Solar Water Oxidation\",\"authors\":\"Ziming Wang,&nbsp;Zhaohui Fang,&nbsp;Jiabin Zhou,&nbsp;Quanjun Xiang\",\"doi\":\"10.1002/solr.202500526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes a strategy for passivating intrinsic oxygen vacancies (Ovac) on BiVO<sub>4</sub> photoanodes through surface modification with carbon nitride quantum dots (CNQDs). The BiVO<sub>4</sub>-CNQDs photoanode was fabricated via chemical bath deposition and calcination, achieving significant Ovac suppression without compromising the crystallinity of the BiVO<sub>4</sub> framework. This Ovac reduction critically alters the thermodynamic landscape of water oxidation by modulating intermediate adsorption energetics, steering the reaction pathway toward selective H<sub>2</sub>O<sub>2</sub> generation. The optimized BiVO<sub>4</sub>-CNQDs photoanode demonstrates a 24.91% average Faradaic efficiency (FE) for H<sub>2</sub>O<sub>2</sub> production, representing a 1.38-fold enhancement over the pristine BiVO<sub>4</sub> photoanode. By integrating an In<sub>2</sub>O<sub>3</sub> passivation layer, a BiVO<sub>4</sub>-CNQDs-In<sub>2</sub>O<sub>3</sub> photoanode was formed, and the average FE of H<sub>2</sub>O<sub>2</sub> preparation reached 28.16%, achieving further performance improvement. The generated electrons and holes can be more effectively transferred from BiVO<sub>4</sub> to the In<sub>2</sub>O<sub>3</sub> passivation layer before participating in subsequent electrochemical reactions. This dual modification synergistically promotes the quasi-Fermi level of holes to move toward the anode and reduces band bending, synergistically driving photo generated holes toward the higher oxidation potentials to accelerate the selective conversion of H<sub>2</sub>O to H<sub>2</sub>O<sub>2</sub>. The BiVO<sub>4</sub>-CNQDs-In<sub>2</sub>O<sub>3</sub> photoanode achieves a 1.58-fold improvement in average H<sub>2</sub>O<sub>2</sub> FE within the 1.2–2.4 V versus reversible hydrogen electrode (RHE) range compared to unmodified BiVO<sub>4</sub>. This work establishes an innovative approach for modulating inherent Ovac in BiVO<sub>4</sub> photoanode and optimizing the preparation pathway of H<sub>2</sub>O<sub>2</sub> through the vacancy engineering.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 18\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500526\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500526","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种通过氮化碳量子点(CNQDs)表面修饰BiVO4光阳极钝化其固有氧空位(Ovac)的策略。通过化学浴沉积和煅烧制备了BiVO4- cnqds光阳极,在不影响BiVO4框架结晶度的情况下实现了明显的Ovac抑制。这种Ovac还原通过调节中间吸附能量,将反应途径转向选择性生成H2O2,从而严重改变了水氧化的热力学景观。优化后的BiVO4- cnqds光阳极产生H2O2的平均法拉第效率(FE)为24.91%,比原始BiVO4光阳极提高了1.38倍。通过集成In2O3钝化层,形成BiVO4-CNQDs-In2O3光阳极,制备的H2O2平均FE达到28.16%,进一步提高了性能。生成的电子和空穴可以更有效地从BiVO4转移到In2O3钝化层,参与后续的电化学反应。这种双重修饰协同促进了准费米能级的空穴向阳极移动,减少了能带弯曲,协同推动光生成的空穴向更高的氧化电位移动,从而加速了H2O向H2O2的选择性转化。与未修饰的BiVO4相比,BiVO4- cnqds - in2o3光阳极在1.2-2.4 V的可逆氢电极(RHE)范围内平均H2O2 FE提高了1.58倍。本工作建立了一种创新的方法来调节BiVO4光阳极中固有的Ovac,并通过空位工程优化H2O2的制备途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen-Rich Carbon Nitride Quantum Dots Engineered Bismuth Vanadate Photoanode Surface to Achieve Highly Efficient Solar Water Oxidation

Oxygen-Rich Carbon Nitride Quantum Dots Engineered Bismuth Vanadate Photoanode Surface to Achieve Highly Efficient Solar Water Oxidation

This study proposes a strategy for passivating intrinsic oxygen vacancies (Ovac) on BiVO4 photoanodes through surface modification with carbon nitride quantum dots (CNQDs). The BiVO4-CNQDs photoanode was fabricated via chemical bath deposition and calcination, achieving significant Ovac suppression without compromising the crystallinity of the BiVO4 framework. This Ovac reduction critically alters the thermodynamic landscape of water oxidation by modulating intermediate adsorption energetics, steering the reaction pathway toward selective H2O2 generation. The optimized BiVO4-CNQDs photoanode demonstrates a 24.91% average Faradaic efficiency (FE) for H2O2 production, representing a 1.38-fold enhancement over the pristine BiVO4 photoanode. By integrating an In2O3 passivation layer, a BiVO4-CNQDs-In2O3 photoanode was formed, and the average FE of H2O2 preparation reached 28.16%, achieving further performance improvement. The generated electrons and holes can be more effectively transferred from BiVO4 to the In2O3 passivation layer before participating in subsequent electrochemical reactions. This dual modification synergistically promotes the quasi-Fermi level of holes to move toward the anode and reduces band bending, synergistically driving photo generated holes toward the higher oxidation potentials to accelerate the selective conversion of H2O to H2O2. The BiVO4-CNQDs-In2O3 photoanode achieves a 1.58-fold improvement in average H2O2 FE within the 1.2–2.4 V versus reversible hydrogen electrode (RHE) range compared to unmodified BiVO4. This work establishes an innovative approach for modulating inherent Ovac in BiVO4 photoanode and optimizing the preparation pathway of H2O2 through the vacancy engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信