环氧化物和环酸酐合成聚酯多元醇的仿生钴氨基酸配合物

IF 2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Andrés Castro-Ruiz, Hilmir G. Guðjónsson, Berglind Runarsdottir, Sigridur G. Suman
{"title":"环氧化物和环酸酐合成聚酯多元醇的仿生钴氨基酸配合物","authors":"Andrés Castro-Ruiz,&nbsp;Hilmir G. Guðjónsson,&nbsp;Berglind Runarsdottir,&nbsp;Sigridur G. Suman","doi":"10.1002/ejic.202500197","DOIUrl":null,"url":null,"abstract":"<p>The design of bioinspired catalysts offers a promising route to sustainable polyester synthesis. Herein, a series of chiral cobalt(III) amino acid complexes are introduced as highly efficient catalysts for epoxide/cyclic anhydride ring-opening copolymerization (ROCOP). Structure–activity studies reveal that complex <b>2</b>, featuring a polar organosoluble side chain, exhibits exceptional catalytic performance, achieving turnover frequency (TOF) = 1151 h<sup>−1</sup> in CHO/PA ROCOP at 100 °C with DMAP-comparable to state-of-the-art Cr(III)-salen catalysts. Furthermore, complex <b>3</b>, which features a lysine-derived ligand, shows improved reactivity at elevated anhydride ratios, indicating an influence from the outer coordination sphere on catalysis. Mechanistic analysis reveals a zero-order dependence on anhydride concentration, confirming that the propagation step saturates the catalyst. Further, complex <b>2</b> maintains high TOF (1164 h<sup>−1</sup>) even in the presence of a chain transfer agent, enabling precise molecular weight control. This work illustrates tuning by an amino acid ligand as a powerful strategy for developing efficient, selective, and sustainable ROCOP catalysts, bridging the gap between bioinspired design and high-performance polymerization.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"28 26","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Cobalt Amino Acid Complexes for Synthesis of Polyester Polyols from Epoxide and Cyclic Anhydride\",\"authors\":\"Andrés Castro-Ruiz,&nbsp;Hilmir G. Guðjónsson,&nbsp;Berglind Runarsdottir,&nbsp;Sigridur G. Suman\",\"doi\":\"10.1002/ejic.202500197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The design of bioinspired catalysts offers a promising route to sustainable polyester synthesis. Herein, a series of chiral cobalt(III) amino acid complexes are introduced as highly efficient catalysts for epoxide/cyclic anhydride ring-opening copolymerization (ROCOP). Structure–activity studies reveal that complex <b>2</b>, featuring a polar organosoluble side chain, exhibits exceptional catalytic performance, achieving turnover frequency (TOF) = 1151 h<sup>−1</sup> in CHO/PA ROCOP at 100 °C with DMAP-comparable to state-of-the-art Cr(III)-salen catalysts. Furthermore, complex <b>3</b>, which features a lysine-derived ligand, shows improved reactivity at elevated anhydride ratios, indicating an influence from the outer coordination sphere on catalysis. Mechanistic analysis reveals a zero-order dependence on anhydride concentration, confirming that the propagation step saturates the catalyst. Further, complex <b>2</b> maintains high TOF (1164 h<sup>−1</sup>) even in the presence of a chain transfer agent, enabling precise molecular weight control. This work illustrates tuning by an amino acid ligand as a powerful strategy for developing efficient, selective, and sustainable ROCOP catalysts, bridging the gap between bioinspired design and high-performance polymerization.</p>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":\"28 26\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejic.202500197\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejic.202500197","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

生物催化剂的设计为可持续聚酯合成提供了一条有前途的途径。本文介绍了一系列手性钴(III)氨基酸配合物作为环氧化物/环酸酐开环共聚(ROCOP)的高效催化剂。结构活性研究表明,具有极性有机可溶性侧链的配合物2表现出优异的催化性能,在CHO/PA ROCOP中,在100°C的dmap下,其周转频率(TOF)达到1151 h−1,与最先进的Cr(III)-salen催化剂相当。此外,以赖氨酸衍生配体为特征的配合物3在较高的酸酐比下表现出更好的反应活性,表明外部配位球对催化的影响。机理分析揭示了对酸酐浓度的零级依赖,证实了传播步骤使催化剂饱和。此外,即使在链转移剂存在的情况下,配合物2也能保持高TOF (1164 h−1),从而实现精确的分子量控制。这项工作说明了氨基酸配体的调整是开发高效,选择性和可持续的ROCOP催化剂的有力策略,弥合了生物灵感设计和高性能聚合之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinspired Cobalt Amino Acid Complexes for Synthesis of Polyester Polyols from Epoxide and Cyclic Anhydride

Bioinspired Cobalt Amino Acid Complexes for Synthesis of Polyester Polyols from Epoxide and Cyclic Anhydride

The design of bioinspired catalysts offers a promising route to sustainable polyester synthesis. Herein, a series of chiral cobalt(III) amino acid complexes are introduced as highly efficient catalysts for epoxide/cyclic anhydride ring-opening copolymerization (ROCOP). Structure–activity studies reveal that complex 2, featuring a polar organosoluble side chain, exhibits exceptional catalytic performance, achieving turnover frequency (TOF) = 1151 h−1 in CHO/PA ROCOP at 100 °C with DMAP-comparable to state-of-the-art Cr(III)-salen catalysts. Furthermore, complex 3, which features a lysine-derived ligand, shows improved reactivity at elevated anhydride ratios, indicating an influence from the outer coordination sphere on catalysis. Mechanistic analysis reveals a zero-order dependence on anhydride concentration, confirming that the propagation step saturates the catalyst. Further, complex 2 maintains high TOF (1164 h−1) even in the presence of a chain transfer agent, enabling precise molecular weight control. This work illustrates tuning by an amino acid ligand as a powerful strategy for developing efficient, selective, and sustainable ROCOP catalysts, bridging the gap between bioinspired design and high-performance polymerization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Inorganic Chemistry
European Journal of Inorganic Chemistry 化学-无机化学与核化学
CiteScore
4.30
自引率
4.30%
发文量
419
审稿时长
1.3 months
期刊介绍: The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry: Chemische Berichte Bulletin des Sociétés Chimiques Belges Bulletin de la Société Chimique de France Gazzetta Chimica Italiana Recueil des Travaux Chimiques des Pays-Bas Anales de Química Chimika Chronika Revista Portuguesa de Química ACH—Models in Chemistry Polish Journal of Chemistry The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信