{"title":"环糊精聚合物液晶光学传感器的制备及其对天然污染水样中工业染料的实时、选择性和可见检测","authors":"Madeeha Rashid, Satyabratt Pandey, Vishal Singh, Chandan Bhai Patel, Ranjan Kumar Singh, Sachin Kumar Singh","doi":"10.1002/anse.202400117","DOIUrl":null,"url":null,"abstract":"<p>Industrial wastewater release of dyes poses serious environmental and health risks when introduced into natural water systems. Herein, a cyclodextrin-based polymer sensor (Ech-CDP) is developed for real-time, visible detection of harmful methylene blue (MB) and methyl orange (MO) dyes in distilled and contaminated natural water samples. The sensor works through a competitive host-guest mechanism between sodium dodecyl sulphate (SDS) and Ech-CDP, altering liquid crystal alignment. Initially, SDS induces homeotropic ordering, which shifts to a tilted state upon binding with Ech-CDP. The presence of MB or MO displaces SDS, reverting the alignment and causing a visible bright-to-dark transition under polarizers. The sensor exhibits high selectivity, with detection limits of 0.03 mM for MB and 0.05 mM for MO in aqueous solutions, and 0.08 mM for MB and 0.26 mM for MO in real water samples, remains effective for 3 days, and is unaffected by pH variations between 4.8 and 9.1. Additionally, the sensor demonstrates an on–off switching capability, suggesting potential applications for molecular logic gates and advancing environmental monitoring techniques in dye-polluted waters.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"5 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of Liquid Crystal Optical Sensors Using Cyclodextrin Polymer for Real Time, Selective and Visible Detection of Industrial Dyes in Contaminated Natural Water Samples\",\"authors\":\"Madeeha Rashid, Satyabratt Pandey, Vishal Singh, Chandan Bhai Patel, Ranjan Kumar Singh, Sachin Kumar Singh\",\"doi\":\"10.1002/anse.202400117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Industrial wastewater release of dyes poses serious environmental and health risks when introduced into natural water systems. Herein, a cyclodextrin-based polymer sensor (Ech-CDP) is developed for real-time, visible detection of harmful methylene blue (MB) and methyl orange (MO) dyes in distilled and contaminated natural water samples. The sensor works through a competitive host-guest mechanism between sodium dodecyl sulphate (SDS) and Ech-CDP, altering liquid crystal alignment. Initially, SDS induces homeotropic ordering, which shifts to a tilted state upon binding with Ech-CDP. The presence of MB or MO displaces SDS, reverting the alignment and causing a visible bright-to-dark transition under polarizers. The sensor exhibits high selectivity, with detection limits of 0.03 mM for MB and 0.05 mM for MO in aqueous solutions, and 0.08 mM for MB and 0.26 mM for MO in real water samples, remains effective for 3 days, and is unaffected by pH variations between 4.8 and 9.1. Additionally, the sensor demonstrates an on–off switching capability, suggesting potential applications for molecular logic gates and advancing environmental monitoring techniques in dye-polluted waters.</p>\",\"PeriodicalId\":72192,\"journal\":{\"name\":\"Analysis & sensing\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/anse.202400117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/anse.202400117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Fabrication of Liquid Crystal Optical Sensors Using Cyclodextrin Polymer for Real Time, Selective and Visible Detection of Industrial Dyes in Contaminated Natural Water Samples
Industrial wastewater release of dyes poses serious environmental and health risks when introduced into natural water systems. Herein, a cyclodextrin-based polymer sensor (Ech-CDP) is developed for real-time, visible detection of harmful methylene blue (MB) and methyl orange (MO) dyes in distilled and contaminated natural water samples. The sensor works through a competitive host-guest mechanism between sodium dodecyl sulphate (SDS) and Ech-CDP, altering liquid crystal alignment. Initially, SDS induces homeotropic ordering, which shifts to a tilted state upon binding with Ech-CDP. The presence of MB or MO displaces SDS, reverting the alignment and causing a visible bright-to-dark transition under polarizers. The sensor exhibits high selectivity, with detection limits of 0.03 mM for MB and 0.05 mM for MO in aqueous solutions, and 0.08 mM for MB and 0.26 mM for MO in real water samples, remains effective for 3 days, and is unaffected by pH variations between 4.8 and 9.1. Additionally, the sensor demonstrates an on–off switching capability, suggesting potential applications for molecular logic gates and advancing environmental monitoring techniques in dye-polluted waters.