表面重建工程过渡金属复合纳米片绿色高效电催化转化生物质基HMF到FDCA

IF 6.1 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Yifang Fu, Yunliang Li, Bolun Liu, Wang Runwei, Shilun Qiu, Zongtao Zhang
{"title":"表面重建工程过渡金属复合纳米片绿色高效电催化转化生物质基HMF到FDCA","authors":"Yifang Fu,&nbsp;Yunliang Li,&nbsp;Bolun Liu,&nbsp;Wang Runwei,&nbsp;Shilun Qiu,&nbsp;Zongtao Zhang","doi":"10.1002/adsu.202500259","DOIUrl":null,"url":null,"abstract":"<p>The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a sustainable alternative to petroleum-derived polymers, is limited by high energy demands and precious-metal reliance. This work presents a cost-effective Ni-Co PTA nanosheet electrocatalyst fabricated via electrodeposition, solvothermal treatment, and in situ activation. Unlike conventional Au/Pd-based catalysts or transition metal hydroxides, the activated catalyst features ultrathin hexagonal nanosheets with enriched Ni<sup>3</sup>⁺/Co<sup>3</sup>⁺ species, achieving 99.9% conversion and high FDCA yield at 0.35 V(vs. HgO/Hg), outperforming non-precious benchmarks and approaching noble metals. Mechanistic analysis reveals that alkaline cycling drives evolution from dense hydroxide precursors into nanosheets., enlarging the electrochemical surface area and reducing charge-transfer resistance. XPS and in situ Raman spectroscopy confirm Ni<sup>2</sup>⁺→Ni<sup>3</sup>⁺/Co<sup>2</sup>⁺→Co<sup>3</sup>⁺ transitions, enabling NiOOH formation at lower potentials. Notably, the catalyst exhibits versatile oxidation activity toward glycerol, urea, and methanol, while maintaining high yield under practical concentrations. This work provides a scalable and sustainable strategy for biomass valorization, bridging the gap between non-precious catalyst design and industrial feasibility for green chemical synthesis.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 9","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Reconstruction-Engineered Transition Metals Composite Nanosheets for Green and High-Efficiency Electrocatalytic Conversion of Biomass-Derived HMF to FDCA\",\"authors\":\"Yifang Fu,&nbsp;Yunliang Li,&nbsp;Bolun Liu,&nbsp;Wang Runwei,&nbsp;Shilun Qiu,&nbsp;Zongtao Zhang\",\"doi\":\"10.1002/adsu.202500259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a sustainable alternative to petroleum-derived polymers, is limited by high energy demands and precious-metal reliance. This work presents a cost-effective Ni-Co PTA nanosheet electrocatalyst fabricated via electrodeposition, solvothermal treatment, and in situ activation. Unlike conventional Au/Pd-based catalysts or transition metal hydroxides, the activated catalyst features ultrathin hexagonal nanosheets with enriched Ni<sup>3</sup>⁺/Co<sup>3</sup>⁺ species, achieving 99.9% conversion and high FDCA yield at 0.35 V(vs. HgO/Hg), outperforming non-precious benchmarks and approaching noble metals. Mechanistic analysis reveals that alkaline cycling drives evolution from dense hydroxide precursors into nanosheets., enlarging the electrochemical surface area and reducing charge-transfer resistance. XPS and in situ Raman spectroscopy confirm Ni<sup>2</sup>⁺→Ni<sup>3</sup>⁺/Co<sup>2</sup>⁺→Co<sup>3</sup>⁺ transitions, enabling NiOOH formation at lower potentials. Notably, the catalyst exhibits versatile oxidation activity toward glycerol, urea, and methanol, while maintaining high yield under practical concentrations. This work provides a scalable and sustainable strategy for biomass valorization, bridging the gap between non-precious catalyst design and industrial feasibility for green chemical synthesis.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500259\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500259","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

5-羟甲基糠醛(HMF)电催化氧化制2,5-呋喃二羧酸(FDCA)是石油衍生聚合物的可持续替代品,但由于能源需求高和对贵金属的依赖而受到限制。本文介绍了一种通过电沉积、溶剂热处理和原位活化制备的具有成本效益的镍钴PTA纳米片电催化剂。与传统的Au/ pd基催化剂或过渡金属氢氧化物不同,活性催化剂具有超薄六方纳米片,具有丰富的Ni3 + /Co3 +物质,在0.35 V(vs)下实现99.9%的转化率和较高的FDCA产率。HgO/Hg),表现优于非贵金属基准,接近贵金属。机理分析表明,碱性循环驱动从致密氢氧化物前体到纳米片的演化。增大了电化学表面积,降低了电荷传递阻力。XPS和原位拉曼光谱证实了Ni2 +→Ni3 + /Co2 +→Co3 +的转变,使NiOOH在较低电位下形成。值得注意的是,该催化剂对甘油、尿素和甲醇表现出多种氧化活性,同时在实际浓度下保持高收率。这项工作为生物质增值提供了一种可扩展和可持续的策略,弥合了非贵重催化剂设计与绿色化学合成工业可行性之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface Reconstruction-Engineered Transition Metals Composite Nanosheets for Green and High-Efficiency Electrocatalytic Conversion of Biomass-Derived HMF to FDCA

Surface Reconstruction-Engineered Transition Metals Composite Nanosheets for Green and High-Efficiency Electrocatalytic Conversion of Biomass-Derived HMF to FDCA

The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a sustainable alternative to petroleum-derived polymers, is limited by high energy demands and precious-metal reliance. This work presents a cost-effective Ni-Co PTA nanosheet electrocatalyst fabricated via electrodeposition, solvothermal treatment, and in situ activation. Unlike conventional Au/Pd-based catalysts or transition metal hydroxides, the activated catalyst features ultrathin hexagonal nanosheets with enriched Ni3⁺/Co3⁺ species, achieving 99.9% conversion and high FDCA yield at 0.35 V(vs. HgO/Hg), outperforming non-precious benchmarks and approaching noble metals. Mechanistic analysis reveals that alkaline cycling drives evolution from dense hydroxide precursors into nanosheets., enlarging the electrochemical surface area and reducing charge-transfer resistance. XPS and in situ Raman spectroscopy confirm Ni2⁺→Ni3⁺/Co2⁺→Co3⁺ transitions, enabling NiOOH formation at lower potentials. Notably, the catalyst exhibits versatile oxidation activity toward glycerol, urea, and methanol, while maintaining high yield under practical concentrations. This work provides a scalable and sustainable strategy for biomass valorization, bridging the gap between non-precious catalyst design and industrial feasibility for green chemical synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信