数据驱动的长周期锂金属电池锂盐设计

IF 6.1 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Un Hwan Lee, Kyungju Nam, Seung Hyo Noh, Donghwi Kim, Joonhee Kang
{"title":"数据驱动的长周期锂金属电池锂盐设计","authors":"Un Hwan Lee,&nbsp;Kyungju Nam,&nbsp;Seung Hyo Noh,&nbsp;Donghwi Kim,&nbsp;Joonhee Kang","doi":"10.1002/adsu.202500413","DOIUrl":null,"url":null,"abstract":"<p>The development of high-performance electrolytes for lithium metal batteries (LMBs) is hindered by time-intensive experimental characterization. Here, a data-driven predictive model is presented to estimate Coulombic efficiency (CE) and lithium metal thickness evolution using electrolyte composition and density functional theory (DFT)-derived descriptors. By analyzing 21 lithium salts, key computational parameters, including LUMO energy levels, are extracted from lithium oxidation states, and adsorption energies. Machine learning models, particularly XGBoost and random forest, achieve high predictive accuracy, reducing mean squared error by over 50% compared to structural-only models. Linear regression reveals that higher LUMO values and lower lithium oxidation states correlate with improved CE, guiding the selection of LiDFP, LiNO<sub>3</sub>, LiPDI, and LiHDI as promising additives to LiFSI. While constrained by limited SEI characterization and dataset size, this study establishes a computational framework for electrolyte optimization, accelerating LMB development and cycle life enhancement.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 9","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202500413","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Lithium Salt Design for Long-Cycle Lithium Metal Battery\",\"authors\":\"Un Hwan Lee,&nbsp;Kyungju Nam,&nbsp;Seung Hyo Noh,&nbsp;Donghwi Kim,&nbsp;Joonhee Kang\",\"doi\":\"10.1002/adsu.202500413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of high-performance electrolytes for lithium metal batteries (LMBs) is hindered by time-intensive experimental characterization. Here, a data-driven predictive model is presented to estimate Coulombic efficiency (CE) and lithium metal thickness evolution using electrolyte composition and density functional theory (DFT)-derived descriptors. By analyzing 21 lithium salts, key computational parameters, including LUMO energy levels, are extracted from lithium oxidation states, and adsorption energies. Machine learning models, particularly XGBoost and random forest, achieve high predictive accuracy, reducing mean squared error by over 50% compared to structural-only models. Linear regression reveals that higher LUMO values and lower lithium oxidation states correlate with improved CE, guiding the selection of LiDFP, LiNO<sub>3</sub>, LiPDI, and LiHDI as promising additives to LiFSI. While constrained by limited SEI characterization and dataset size, this study establishes a computational framework for electrolyte optimization, accelerating LMB development and cycle life enhancement.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202500413\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500413\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500413","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池(lmb)高性能电解质的开发受到耗时的实验表征的阻碍。本文提出了一个数据驱动的预测模型,利用电解质成分和密度泛函理论(DFT)衍生的描述符来估计库仑效率(CE)和锂金属厚度演变。通过对21种锂盐的分析,从锂的氧化态和吸附能中提取出LUMO能级等关键计算参数。机器学习模型,特别是XGBoost和随机森林,实现了很高的预测精度,与仅结构模型相比,均方误差降低了50%以上。线性回归表明,较高的LUMO值和较低的锂氧化态与提高CE相关,这指导了LiDFP、LiNO3、LiPDI和LiHDI作为LiFSI有前途的添加剂的选择。虽然受到有限的SEI表征和数据集大小的限制,但本研究建立了电解质优化的计算框架,加速了LMB的开发和循环寿命的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-Driven Lithium Salt Design for Long-Cycle Lithium Metal Battery

Data-Driven Lithium Salt Design for Long-Cycle Lithium Metal Battery

The development of high-performance electrolytes for lithium metal batteries (LMBs) is hindered by time-intensive experimental characterization. Here, a data-driven predictive model is presented to estimate Coulombic efficiency (CE) and lithium metal thickness evolution using electrolyte composition and density functional theory (DFT)-derived descriptors. By analyzing 21 lithium salts, key computational parameters, including LUMO energy levels, are extracted from lithium oxidation states, and adsorption energies. Machine learning models, particularly XGBoost and random forest, achieve high predictive accuracy, reducing mean squared error by over 50% compared to structural-only models. Linear regression reveals that higher LUMO values and lower lithium oxidation states correlate with improved CE, guiding the selection of LiDFP, LiNO3, LiPDI, and LiHDI as promising additives to LiFSI. While constrained by limited SEI characterization and dataset size, this study establishes a computational framework for electrolyte optimization, accelerating LMB development and cycle life enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信