离子推力器气体放电室壁面侵蚀产物沉积过程的建模

IF 0.4 Q4 PHYSICS, CONDENSED MATTER
M. V. Cherkasova
{"title":"离子推力器气体放电室壁面侵蚀产物沉积过程的建模","authors":"M. V. Cherkasova","doi":"10.1134/S1027451025701113","DOIUrl":null,"url":null,"abstract":"<p>The problem of contamination of the inner surface of the gas-discharge chamber of a high-frequency ion thruster with sputtered material of the accelerating electrode is considered. A physical and mathematical model of electrode surface sputtering by secondary ions is formulated using the sputtering indicatrix. The motion of sputtered atoms through the flow of primary beam particles is considered, and the conditions for the penetration of sputtered material into the plasma of the gas-discharge chamber are determined. The motion of impurity atoms through the gas-discharge plasma is considered taking into account the possibility of impurity ionization. It is also assumed that all impurity atoms reaching the chamber surface are condensed. Numerical modeling of surface contamination for a spherical gas-discharge chamber using carbon and titanium as the material of the accelerating electrode of the ion-optical system is performed, regardless to the chamber material. The angular distribution of particles penetrating the chamber is obtained, and the maximum velocity and localization of particle deposition on the surface of the gas-discharge chamber are estimated. The results are in satisfactory agreement with published experimental data.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"19 3","pages":"771 - 782"},"PeriodicalIF":0.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Process of Deposition of Erosion Products on the Walls of the Gas-Discharge Chamber of an Ion Thruster\",\"authors\":\"M. V. Cherkasova\",\"doi\":\"10.1134/S1027451025701113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of contamination of the inner surface of the gas-discharge chamber of a high-frequency ion thruster with sputtered material of the accelerating electrode is considered. A physical and mathematical model of electrode surface sputtering by secondary ions is formulated using the sputtering indicatrix. The motion of sputtered atoms through the flow of primary beam particles is considered, and the conditions for the penetration of sputtered material into the plasma of the gas-discharge chamber are determined. The motion of impurity atoms through the gas-discharge plasma is considered taking into account the possibility of impurity ionization. It is also assumed that all impurity atoms reaching the chamber surface are condensed. Numerical modeling of surface contamination for a spherical gas-discharge chamber using carbon and titanium as the material of the accelerating electrode of the ion-optical system is performed, regardless to the chamber material. The angular distribution of particles penetrating the chamber is obtained, and the maximum velocity and localization of particle deposition on the surface of the gas-discharge chamber are estimated. The results are in satisfactory agreement with published experimental data.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"19 3\",\"pages\":\"771 - 782\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1027451025701113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451025701113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

研究了加速电极溅射材料对高频离子推力器气体放电腔内表面的污染问题。利用二次离子溅射指标建立了电极表面溅射的物理和数学模型。考虑了溅射原子在原束粒子流中的运动,确定了溅射材料进入气体放电室等离子体的条件。考虑到杂质电离的可能性,考虑了杂质原子在气体放电等离子体中的运动。还假定到达腔室表面的所有杂质原子都是凝聚的。采用碳和钛作为离子光学系统加速电极的材料,对球形气体放电室的表面污染进行了数值模拟,而不考虑室的材料。得到了穿透气体放电腔的颗粒的角分布,并估计了颗粒在气体放电腔表面沉积的最大速度和局部分布。所得结果与已发表的实验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling the Process of Deposition of Erosion Products on the Walls of the Gas-Discharge Chamber of an Ion Thruster

Modeling the Process of Deposition of Erosion Products on the Walls of the Gas-Discharge Chamber of an Ion Thruster

The problem of contamination of the inner surface of the gas-discharge chamber of a high-frequency ion thruster with sputtered material of the accelerating electrode is considered. A physical and mathematical model of electrode surface sputtering by secondary ions is formulated using the sputtering indicatrix. The motion of sputtered atoms through the flow of primary beam particles is considered, and the conditions for the penetration of sputtered material into the plasma of the gas-discharge chamber are determined. The motion of impurity atoms through the gas-discharge plasma is considered taking into account the possibility of impurity ionization. It is also assumed that all impurity atoms reaching the chamber surface are condensed. Numerical modeling of surface contamination for a spherical gas-discharge chamber using carbon and titanium as the material of the accelerating electrode of the ion-optical system is performed, regardless to the chamber material. The angular distribution of particles penetrating the chamber is obtained, and the maximum velocity and localization of particle deposition on the surface of the gas-discharge chamber are estimated. The results are in satisfactory agreement with published experimental data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信