S. V. Valueva, M. E. Vylegzhanina, L. N. Borovikova, P. J. Morozova, A. V. Yakimansky
{"title":"用于光动力治疗的新型混合多组分含硒纳米系统","authors":"S. V. Valueva, M. E. Vylegzhanina, L. N. Borovikova, P. J. Morozova, A. V. Yakimansky","doi":"10.1134/S102745102570106X","DOIUrl":null,"url":null,"abstract":"<p>Comparative studies of new double and triple selenium-containing nanosystems based on a Photoditazine photosensitizer and amphiphilic molecular brushes (graft copolymers) with a polyimide or cellulose backbone and polymethacrylic acid side chains have been performed by atomic force microscopy and UV–visible spectroscopy. The influence of the structure and topology of the graft copolymers on the morphological and spectral characteristics of amphiphilic molecular brushes loaded with selenium nanoparticles and Photoditazine has been established. It is found that amphiphilic molecular brushes prevent the association of the selenium nanoparticles in solution, forming predominantly discrete spherical nanostructures. It is shown that for a double selenium-containing nanodispersion obtained on the brush with a polyimide main chain with a polymerization degree of the side chains of polymethacrylic acid <i>m</i> = 180, in addition to spherical discrete nanostructures, “capsules” of 200–400 nm in size are also observed. It is suggested that formation of the hybrid multicomponent selenium-containing nanostructures occurs mainly due to the steric stabilization of selenium nanoparticles by brush macromolecules and their incorporation according to the type of metal-porphyrin complexes. Based on UV–visible spectroscopy data, the band gap energy and the diameter of the selenium nanoparticles for hybrid multicomponent selenium-containing nanostructures have been calculated.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"19 3","pages":"717 - 728"},"PeriodicalIF":0.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Hybrid Multicomponent Selenium-Containing Nanosystems for Photodynamic Therapy\",\"authors\":\"S. V. Valueva, M. E. Vylegzhanina, L. N. Borovikova, P. J. Morozova, A. V. Yakimansky\",\"doi\":\"10.1134/S102745102570106X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Comparative studies of new double and triple selenium-containing nanosystems based on a Photoditazine photosensitizer and amphiphilic molecular brushes (graft copolymers) with a polyimide or cellulose backbone and polymethacrylic acid side chains have been performed by atomic force microscopy and UV–visible spectroscopy. The influence of the structure and topology of the graft copolymers on the morphological and spectral characteristics of amphiphilic molecular brushes loaded with selenium nanoparticles and Photoditazine has been established. It is found that amphiphilic molecular brushes prevent the association of the selenium nanoparticles in solution, forming predominantly discrete spherical nanostructures. It is shown that for a double selenium-containing nanodispersion obtained on the brush with a polyimide main chain with a polymerization degree of the side chains of polymethacrylic acid <i>m</i> = 180, in addition to spherical discrete nanostructures, “capsules” of 200–400 nm in size are also observed. It is suggested that formation of the hybrid multicomponent selenium-containing nanostructures occurs mainly due to the steric stabilization of selenium nanoparticles by brush macromolecules and their incorporation according to the type of metal-porphyrin complexes. Based on UV–visible spectroscopy data, the band gap energy and the diameter of the selenium nanoparticles for hybrid multicomponent selenium-containing nanostructures have been calculated.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"19 3\",\"pages\":\"717 - 728\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S102745102570106X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S102745102570106X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
New Hybrid Multicomponent Selenium-Containing Nanosystems for Photodynamic Therapy
Comparative studies of new double and triple selenium-containing nanosystems based on a Photoditazine photosensitizer and amphiphilic molecular brushes (graft copolymers) with a polyimide or cellulose backbone and polymethacrylic acid side chains have been performed by atomic force microscopy and UV–visible spectroscopy. The influence of the structure and topology of the graft copolymers on the morphological and spectral characteristics of amphiphilic molecular brushes loaded with selenium nanoparticles and Photoditazine has been established. It is found that amphiphilic molecular brushes prevent the association of the selenium nanoparticles in solution, forming predominantly discrete spherical nanostructures. It is shown that for a double selenium-containing nanodispersion obtained on the brush with a polyimide main chain with a polymerization degree of the side chains of polymethacrylic acid m = 180, in addition to spherical discrete nanostructures, “capsules” of 200–400 nm in size are also observed. It is suggested that formation of the hybrid multicomponent selenium-containing nanostructures occurs mainly due to the steric stabilization of selenium nanoparticles by brush macromolecules and their incorporation according to the type of metal-porphyrin complexes. Based on UV–visible spectroscopy data, the band gap energy and the diameter of the selenium nanoparticles for hybrid multicomponent selenium-containing nanostructures have been calculated.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.