{"title":"最大采样包络检测器的性能边界","authors":"Swagat Bhattacharyya","doi":"10.1109/TCSII.2025.3605161","DOIUrl":null,"url":null,"abstract":"Envelope detectors in automatic gain control systems must achieve both low tracking latency and low output ripple for feedback stability. Conventional non-sampled envelope detectors intrinsically trade off latency and ripple. Maxima-sampling envelope detectors (MSEDs), which demodulate by sampling signal peaks, circumvent this latency-ripple trade-off, enabling control loops that remain stable over several frequency decades. However, MSED nonlinearity causes an intricate, previously uncharacterized interplay between input spectral properties and performance. This work analytically derives and numerically verifies input-dependent performance bounds for MSEDs. By formulating practical “rules-of-thumb” for mixed-signal circuit designers, we pave the way for the broader adoption of MSEDs.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 10","pages":"1473-1477"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Bounds for a Maxima-Sampling Envelope Detector\",\"authors\":\"Swagat Bhattacharyya\",\"doi\":\"10.1109/TCSII.2025.3605161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Envelope detectors in automatic gain control systems must achieve both low tracking latency and low output ripple for feedback stability. Conventional non-sampled envelope detectors intrinsically trade off latency and ripple. Maxima-sampling envelope detectors (MSEDs), which demodulate by sampling signal peaks, circumvent this latency-ripple trade-off, enabling control loops that remain stable over several frequency decades. However, MSED nonlinearity causes an intricate, previously uncharacterized interplay between input spectral properties and performance. This work analytically derives and numerically verifies input-dependent performance bounds for MSEDs. By formulating practical “rules-of-thumb” for mixed-signal circuit designers, we pave the way for the broader adoption of MSEDs.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 10\",\"pages\":\"1473-1477\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11146888/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11146888/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance Bounds for a Maxima-Sampling Envelope Detector
Envelope detectors in automatic gain control systems must achieve both low tracking latency and low output ripple for feedback stability. Conventional non-sampled envelope detectors intrinsically trade off latency and ripple. Maxima-sampling envelope detectors (MSEDs), which demodulate by sampling signal peaks, circumvent this latency-ripple trade-off, enabling control loops that remain stable over several frequency decades. However, MSED nonlinearity causes an intricate, previously uncharacterized interplay between input spectral properties and performance. This work analytically derives and numerically verifies input-dependent performance bounds for MSEDs. By formulating practical “rules-of-thumb” for mixed-signal circuit designers, we pave the way for the broader adoption of MSEDs.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.