抗翘曲、无欠挤压、高表面质量的聚乙烯基复合辐射屏蔽材料增材制造工艺

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Duo Xu, , , Volodymyr Korolovych, , , You Lyu, , , Jacqueline Aslarus, , , Domingo R. Flores-Hernandez, , , Simo Pajovic, , , William T. Heller, , , Lembit Sihver, , and , Svetlana V. Boriskina*, 
{"title":"抗翘曲、无欠挤压、高表面质量的聚乙烯基复合辐射屏蔽材料增材制造工艺","authors":"Duo Xu,&nbsp;, ,&nbsp;Volodymyr Korolovych,&nbsp;, ,&nbsp;You Lyu,&nbsp;, ,&nbsp;Jacqueline Aslarus,&nbsp;, ,&nbsp;Domingo R. Flores-Hernandez,&nbsp;, ,&nbsp;Simo Pajovic,&nbsp;, ,&nbsp;William T. Heller,&nbsp;, ,&nbsp;Lembit Sihver,&nbsp;, and ,&nbsp;Svetlana V. Boriskina*,&nbsp;","doi":"10.1021/acsapm.5c02057","DOIUrl":null,"url":null,"abstract":"<p >Polyethylene (PE) is one of the best shielding materials for primary space radiation due to its high hydrogen content. For effective secondary neutron shielding, boron-rich fillers are incorporated to enhance performance. The semicrystalline nature and high thermal expansion coefficient of PE impede its adoption for in situ additive manufacture in space via the fused deposition modeling (FDM) 3D printing. We developed an optimized PE blend to mitigate the effects of under-extrusion and warpage. Guided by studies on extrusion and warpage, we developed an optimal set of printing parameters for the proposed PE blend. The optimum PE blend─both in its pure form and when doped with fillers─has been tested on different FDM printers. The printed structures exhibit high and uniform density, smooth surfaces, no warpage, and competitive mechanical properties. The FDM-printed plates demonstrate efficient shielding from thermal neutrons, predicted via modeling and confirmed experimentally using extended Q-range small-angle neutron scattering.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 18","pages":"12304–12320"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Warpage-Resistant, Under-Extrusion-Free, High-Surface-Quality Additive Manufacturing Process for Polyethylene-Based Composite Radiation Shielding Material\",\"authors\":\"Duo Xu,&nbsp;, ,&nbsp;Volodymyr Korolovych,&nbsp;, ,&nbsp;You Lyu,&nbsp;, ,&nbsp;Jacqueline Aslarus,&nbsp;, ,&nbsp;Domingo R. Flores-Hernandez,&nbsp;, ,&nbsp;Simo Pajovic,&nbsp;, ,&nbsp;William T. Heller,&nbsp;, ,&nbsp;Lembit Sihver,&nbsp;, and ,&nbsp;Svetlana V. Boriskina*,&nbsp;\",\"doi\":\"10.1021/acsapm.5c02057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polyethylene (PE) is one of the best shielding materials for primary space radiation due to its high hydrogen content. For effective secondary neutron shielding, boron-rich fillers are incorporated to enhance performance. The semicrystalline nature and high thermal expansion coefficient of PE impede its adoption for in situ additive manufacture in space via the fused deposition modeling (FDM) 3D printing. We developed an optimized PE blend to mitigate the effects of under-extrusion and warpage. Guided by studies on extrusion and warpage, we developed an optimal set of printing parameters for the proposed PE blend. The optimum PE blend─both in its pure form and when doped with fillers─has been tested on different FDM printers. The printed structures exhibit high and uniform density, smooth surfaces, no warpage, and competitive mechanical properties. The FDM-printed plates demonstrate efficient shielding from thermal neutrons, predicted via modeling and confirmed experimentally using extended Q-range small-angle neutron scattering.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 18\",\"pages\":\"12304–12320\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.5c02057\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c02057","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚乙烯(PE)含氢量高,是屏蔽一次空间辐射的最佳材料之一。为了有效地屏蔽二次中子,采用了富硼填料来提高性能。聚乙烯的半晶性质和高热膨胀系数阻碍了其通过熔融沉积建模(FDM) 3D打印在空间原位增材制造中的应用。我们开发了一种优化的PE共混物,以减轻挤压不足和翘曲的影响。在挤压和翘曲研究的指导下,我们为提出的PE共混物开发了一套最佳的打印参数。在不同的FDM打印机上测试了最佳的PE共混物──无论是纯形式还是掺杂填料的形式。打印的结构具有高而均匀的密度、光滑的表面、无翘曲和具有竞争力的机械性能。fdm印刷板显示出对热中子的有效屏蔽,通过模型预测并通过扩展q范围小角中子散射实验证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Warpage-Resistant, Under-Extrusion-Free, High-Surface-Quality Additive Manufacturing Process for Polyethylene-Based Composite Radiation Shielding Material

Warpage-Resistant, Under-Extrusion-Free, High-Surface-Quality Additive Manufacturing Process for Polyethylene-Based Composite Radiation Shielding Material

Polyethylene (PE) is one of the best shielding materials for primary space radiation due to its high hydrogen content. For effective secondary neutron shielding, boron-rich fillers are incorporated to enhance performance. The semicrystalline nature and high thermal expansion coefficient of PE impede its adoption for in situ additive manufacture in space via the fused deposition modeling (FDM) 3D printing. We developed an optimized PE blend to mitigate the effects of under-extrusion and warpage. Guided by studies on extrusion and warpage, we developed an optimal set of printing parameters for the proposed PE blend. The optimum PE blend─both in its pure form and when doped with fillers─has been tested on different FDM printers. The printed structures exhibit high and uniform density, smooth surfaces, no warpage, and competitive mechanical properties. The FDM-printed plates demonstrate efficient shielding from thermal neutrons, predicted via modeling and confirmed experimentally using extended Q-range small-angle neutron scattering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信