氧化铁负载醋酸纤维素纳米纤维对阿霉素局部释放的ph响应动力学研究

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dayae Kang, , , Ji Ha Lee*, , , Azeem Ullah, , , Gopiraman Mayakrishnan, , , Chieri Inada, , , Tomoki Nishimura, , , Jungsoon Lee*, , and , Ick Soo Kim*, 
{"title":"氧化铁负载醋酸纤维素纳米纤维对阿霉素局部释放的ph响应动力学研究","authors":"Dayae Kang,&nbsp;, ,&nbsp;Ji Ha Lee*,&nbsp;, ,&nbsp;Azeem Ullah,&nbsp;, ,&nbsp;Gopiraman Mayakrishnan,&nbsp;, ,&nbsp;Chieri Inada,&nbsp;, ,&nbsp;Tomoki Nishimura,&nbsp;, ,&nbsp;Jungsoon Lee*,&nbsp;, and ,&nbsp;Ick Soo Kim*,&nbsp;","doi":"10.1021/acsapm.5c02631","DOIUrl":null,"url":null,"abstract":"<p >Cellulose acetate (CA) nanofibers incorporating Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> nanoparticles were fabricated via electrospinning for the pH-responsive delivery of doxorubicin (DOX). The nanofiber morphology, surface wettability, chemical composition, and crystallinity were analyzed using FE-SEM, water contact angle measurements, FT-IR spectroscopy, and XRD, respectively. The incorporation of iron oxide nanoparticles altered the fiber diameter while maintaining the overall structural integrity of the CA matrix. The incorporation of iron oxide significantly enhanced DOX loading efficiency, with 2 wt % Fe<sub>3</sub>O<sub>4</sub> nanofibers achieving the highest loading capacity. Drug release studies revealed sustained DOX release under physiological conditions (pH 7.2), governed by diffusion mechanisms, and accelerated release under acidic conditions (pH 5.0), associated with polymer relaxation and erosion. Nanofibers containing 2 wt % Fe<sub>2</sub>O<sub>3</sub> and 2 wt % Fe<sub>3</sub>O<sub>4</sub> exhibited optimal pH-responsive release profiles, maintained structural stability, and demonstrated favorable morphology. Cytotoxicity assays using CT26 cells confirmed the biological activity of DOX released from the nanofibers, demonstrating significant cancer cell suppression under tumor-mimicking acidic conditions.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 18","pages":"12732–12742"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable pH-Responsive Release Kinetics of Doxorubicin from Iron Oxide-Loaded Cellulose Acetate Nanofibers for Localized Drug Delivery\",\"authors\":\"Dayae Kang,&nbsp;, ,&nbsp;Ji Ha Lee*,&nbsp;, ,&nbsp;Azeem Ullah,&nbsp;, ,&nbsp;Gopiraman Mayakrishnan,&nbsp;, ,&nbsp;Chieri Inada,&nbsp;, ,&nbsp;Tomoki Nishimura,&nbsp;, ,&nbsp;Jungsoon Lee*,&nbsp;, and ,&nbsp;Ick Soo Kim*,&nbsp;\",\"doi\":\"10.1021/acsapm.5c02631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cellulose acetate (CA) nanofibers incorporating Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> nanoparticles were fabricated via electrospinning for the pH-responsive delivery of doxorubicin (DOX). The nanofiber morphology, surface wettability, chemical composition, and crystallinity were analyzed using FE-SEM, water contact angle measurements, FT-IR spectroscopy, and XRD, respectively. The incorporation of iron oxide nanoparticles altered the fiber diameter while maintaining the overall structural integrity of the CA matrix. The incorporation of iron oxide significantly enhanced DOX loading efficiency, with 2 wt % Fe<sub>3</sub>O<sub>4</sub> nanofibers achieving the highest loading capacity. Drug release studies revealed sustained DOX release under physiological conditions (pH 7.2), governed by diffusion mechanisms, and accelerated release under acidic conditions (pH 5.0), associated with polymer relaxation and erosion. Nanofibers containing 2 wt % Fe<sub>2</sub>O<sub>3</sub> and 2 wt % Fe<sub>3</sub>O<sub>4</sub> exhibited optimal pH-responsive release profiles, maintained structural stability, and demonstrated favorable morphology. Cytotoxicity assays using CT26 cells confirmed the biological activity of DOX released from the nanofibers, demonstrating significant cancer cell suppression under tumor-mimicking acidic conditions.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 18\",\"pages\":\"12732–12742\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.5c02631\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c02631","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用静电纺丝法制备了含Fe2O3和Fe3O4纳米颗粒的醋酸纤维素纳米纤维,用于ph响应递送阿霉素(DOX)。利用FE-SEM、水接触角测量、FT-IR光谱和XRD分析了纳米纤维的形貌、表面润湿性、化学成分和结晶度。氧化铁纳米颗粒的掺入改变了纤维直径,同时保持了CA基体的整体结构完整性。氧化铁的掺入显著提高了DOX的负载效率,2 wt %的Fe3O4纳米纤维达到了最高的负载能力。药物释放研究显示,DOX在生理条件下(pH 7.2)持续释放,受扩散机制控制;在酸性条件下(pH 5.0)加速释放,与聚合物松弛和侵蚀有关。含有2 wt % Fe2O3和2 wt % Fe3O4的纳米纤维表现出最佳的ph响应释放曲线,保持结构稳定性,并表现出良好的形貌。使用CT26细胞进行的细胞毒性试验证实了纳米纤维释放的DOX的生物活性,显示出在模拟肿瘤的酸性条件下对癌细胞的显著抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable pH-Responsive Release Kinetics of Doxorubicin from Iron Oxide-Loaded Cellulose Acetate Nanofibers for Localized Drug Delivery

Tunable pH-Responsive Release Kinetics of Doxorubicin from Iron Oxide-Loaded Cellulose Acetate Nanofibers for Localized Drug Delivery

Cellulose acetate (CA) nanofibers incorporating Fe2O3 and Fe3O4 nanoparticles were fabricated via electrospinning for the pH-responsive delivery of doxorubicin (DOX). The nanofiber morphology, surface wettability, chemical composition, and crystallinity were analyzed using FE-SEM, water contact angle measurements, FT-IR spectroscopy, and XRD, respectively. The incorporation of iron oxide nanoparticles altered the fiber diameter while maintaining the overall structural integrity of the CA matrix. The incorporation of iron oxide significantly enhanced DOX loading efficiency, with 2 wt % Fe3O4 nanofibers achieving the highest loading capacity. Drug release studies revealed sustained DOX release under physiological conditions (pH 7.2), governed by diffusion mechanisms, and accelerated release under acidic conditions (pH 5.0), associated with polymer relaxation and erosion. Nanofibers containing 2 wt % Fe2O3 and 2 wt % Fe3O4 exhibited optimal pH-responsive release profiles, maintained structural stability, and demonstrated favorable morphology. Cytotoxicity assays using CT26 cells confirmed the biological activity of DOX released from the nanofibers, demonstrating significant cancer cell suppression under tumor-mimicking acidic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信