智能医疗柔性传感材料:抗菌BC/ PVA-PAA-TA-PEDOT-S水凝胶的制备和性能表征

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tingting Luo, , , Lanlan Wei, , , Nana Zhang, , , Kai Zhang, , , Yufei Liu, , , Shigui Peng, , , Qiao Fan, , , Shuhao Qin, , , Min He*, , , Heng Luo*, , and , Jie Yu*, 
{"title":"智能医疗柔性传感材料:抗菌BC/ PVA-PAA-TA-PEDOT-S水凝胶的制备和性能表征","authors":"Tingting Luo,&nbsp;, ,&nbsp;Lanlan Wei,&nbsp;, ,&nbsp;Nana Zhang,&nbsp;, ,&nbsp;Kai Zhang,&nbsp;, ,&nbsp;Yufei Liu,&nbsp;, ,&nbsp;Shigui Peng,&nbsp;, ,&nbsp;Qiao Fan,&nbsp;, ,&nbsp;Shuhao Qin,&nbsp;, ,&nbsp;Min He*,&nbsp;, ,&nbsp;Heng Luo*,&nbsp;, and ,&nbsp;Jie Yu*,&nbsp;","doi":"10.1021/acsapm.5c02359","DOIUrl":null,"url":null,"abstract":"<p >The demand for high-performance hydrogels in flexible sensors is growing, yet achieving stretchability, conductivity, sensory capabilities, and antimicrobial properties in a simple fabrication process remains challenging. This study integrates bacterial cellulose (BC) into a PVA/PAA/TA/PEDOT-S hydrogel system, addressing the trade-off between mechanical flexibility and electrical performance. With 18 wt % BC, the hydrogel achieved conductivity &gt;11.25 S/cm, a tensile strength of 0.50 MPa (up from 0.16 MPa), and an elongation at break of 930.31% (up from 466.58%). The hydrogel demonstrated excellent strain sensitivity for motion detection, biocompatibility (&gt;95% cell viability), and antibacterial activity, particularly against <i>S. aureus</i>. These findings highlight BC’s synergistic role in developing multifunctional hydrogels, offering a scalable approach for high-performance flexible electronics and wearable health monitoring technologies.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 18","pages":"12520–12529"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Sensing Materials for Smart Healthcare: Fabrication and Performance Characterization of Antibacterial BC/PVA–PAA-TA-PEDOT-S Hydrogels\",\"authors\":\"Tingting Luo,&nbsp;, ,&nbsp;Lanlan Wei,&nbsp;, ,&nbsp;Nana Zhang,&nbsp;, ,&nbsp;Kai Zhang,&nbsp;, ,&nbsp;Yufei Liu,&nbsp;, ,&nbsp;Shigui Peng,&nbsp;, ,&nbsp;Qiao Fan,&nbsp;, ,&nbsp;Shuhao Qin,&nbsp;, ,&nbsp;Min He*,&nbsp;, ,&nbsp;Heng Luo*,&nbsp;, and ,&nbsp;Jie Yu*,&nbsp;\",\"doi\":\"10.1021/acsapm.5c02359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The demand for high-performance hydrogels in flexible sensors is growing, yet achieving stretchability, conductivity, sensory capabilities, and antimicrobial properties in a simple fabrication process remains challenging. This study integrates bacterial cellulose (BC) into a PVA/PAA/TA/PEDOT-S hydrogel system, addressing the trade-off between mechanical flexibility and electrical performance. With 18 wt % BC, the hydrogel achieved conductivity &gt;11.25 S/cm, a tensile strength of 0.50 MPa (up from 0.16 MPa), and an elongation at break of 930.31% (up from 466.58%). The hydrogel demonstrated excellent strain sensitivity for motion detection, biocompatibility (&gt;95% cell viability), and antibacterial activity, particularly against <i>S. aureus</i>. These findings highlight BC’s synergistic role in developing multifunctional hydrogels, offering a scalable approach for high-performance flexible electronics and wearable health monitoring technologies.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 18\",\"pages\":\"12520–12529\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.5c02359\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c02359","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性传感器对高性能水凝胶的需求正在增长,但在简单的制造工艺中实现拉伸性、导电性、感官能力和抗菌性能仍然具有挑战性。本研究将细菌纤维素(BC)整合到PVA/PAA/TA/PEDOT-S水凝胶体系中,解决了机械灵活性和电气性能之间的权衡问题。当BC重量为18 wt %时,水凝胶的电导率为11.25 S/cm,抗拉强度为0.50 MPa(原来为0.16 MPa),断裂伸长率为930.31%(原来为466.58%)。该水凝胶在运动检测、生物相容性(95%细胞存活率)和抗菌活性(尤其是对金黄色葡萄球菌)方面表现出优异的菌株敏感性。这些发现突出了BC在开发多功能水凝胶方面的协同作用,为高性能柔性电子产品和可穿戴健康监测技术提供了可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible Sensing Materials for Smart Healthcare: Fabrication and Performance Characterization of Antibacterial BC/PVA–PAA-TA-PEDOT-S Hydrogels

Flexible Sensing Materials for Smart Healthcare: Fabrication and Performance Characterization of Antibacterial BC/PVA–PAA-TA-PEDOT-S Hydrogels

The demand for high-performance hydrogels in flexible sensors is growing, yet achieving stretchability, conductivity, sensory capabilities, and antimicrobial properties in a simple fabrication process remains challenging. This study integrates bacterial cellulose (BC) into a PVA/PAA/TA/PEDOT-S hydrogel system, addressing the trade-off between mechanical flexibility and electrical performance. With 18 wt % BC, the hydrogel achieved conductivity >11.25 S/cm, a tensile strength of 0.50 MPa (up from 0.16 MPa), and an elongation at break of 930.31% (up from 466.58%). The hydrogel demonstrated excellent strain sensitivity for motion detection, biocompatibility (>95% cell viability), and antibacterial activity, particularly against S. aureus. These findings highlight BC’s synergistic role in developing multifunctional hydrogels, offering a scalable approach for high-performance flexible electronics and wearable health monitoring technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信