一个速率为基础的模型,反应分离柱夹层填料

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Patrick Franke, Markus Schubert, Uwe Hampel, Eugeny Y. Kenig
{"title":"一个速率为基础的模型,反应分离柱夹层填料","authors":"Patrick Franke, Markus Schubert, Uwe Hampel, Eugeny Y. Kenig","doi":"10.1016/j.ces.2025.122681","DOIUrl":null,"url":null,"abstract":"Sandwich packings are assembled from two conventional structured packings with different geometrical surface areas stacked alternatingly within a separation column. When operated under partially flooded conditions, they provide significant mass transfer improvement compared to common structured packings. In this work, a rate-based model including novel mass transfer correlations is presented and validated using a comprehensive experimental database for the reactive absorption of CO<sub>2</sub> into aqueous monoethanolamine. The proposed rate-based approach is capable of accounting for axial dispersion, thereby enabling the evaluation of the effect of liquid-phase backmixing on the mass transfer performance. The validated rate-based model is used to evaluate the separation performance of sandwich packings. Compared with structured packings, up to 10 % higher mass transfer rates are obtained.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rate-based model for reactive separation columns with sandwich packings\",\"authors\":\"Patrick Franke, Markus Schubert, Uwe Hampel, Eugeny Y. Kenig\",\"doi\":\"10.1016/j.ces.2025.122681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sandwich packings are assembled from two conventional structured packings with different geometrical surface areas stacked alternatingly within a separation column. When operated under partially flooded conditions, they provide significant mass transfer improvement compared to common structured packings. In this work, a rate-based model including novel mass transfer correlations is presented and validated using a comprehensive experimental database for the reactive absorption of CO<sub>2</sub> into aqueous monoethanolamine. The proposed rate-based approach is capable of accounting for axial dispersion, thereby enabling the evaluation of the effect of liquid-phase backmixing on the mass transfer performance. The validated rate-based model is used to evaluate the separation performance of sandwich packings. Compared with structured packings, up to 10 % higher mass transfer rates are obtained.\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ces.2025.122681\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.122681","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

夹层填料由两种不同几何表面积的传统结构填料组合而成,在分离柱内交替堆放。当在部分淹水条件下操作时,与普通结构填料相比,它们可以显著改善传质。在这项工作中,提出了一个基于速率的模型,包括新的传质相关性,并使用一个综合的实验数据库来验证CO2在水溶液中反应性吸收。所提出的基于速率的方法能够考虑轴向分散,从而能够评估液相回混对传质性能的影响。将验证过的基于速率的模型用于评价夹层填料的分离性能。与结构填料相比,获得了高达10 %的高传质率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rate-based model for reactive separation columns with sandwich packings
Sandwich packings are assembled from two conventional structured packings with different geometrical surface areas stacked alternatingly within a separation column. When operated under partially flooded conditions, they provide significant mass transfer improvement compared to common structured packings. In this work, a rate-based model including novel mass transfer correlations is presented and validated using a comprehensive experimental database for the reactive absorption of CO2 into aqueous monoethanolamine. The proposed rate-based approach is capable of accounting for axial dispersion, thereby enabling the evaluation of the effect of liquid-phase backmixing on the mass transfer performance. The validated rate-based model is used to evaluate the separation performance of sandwich packings. Compared with structured packings, up to 10 % higher mass transfer rates are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信