微容器内非牛顿流体流动中振荡Peclet数和周期体加速度对非定常Taylor色散的影响

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Prem Babu Pal, P.V.S.N. Murthy
{"title":"微容器内非牛顿流体流动中振荡Peclet数和周期体加速度对非定常Taylor色散的影响","authors":"Prem Babu Pal,&nbsp;P.V.S.N. Murthy","doi":"10.1016/j.ces.2025.122674","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate unsteady solute dispersion in the pulsatile flow of a non-Newtonian Herschel–Bulkley fluid through a circular tube under the influence of periodic body acceleration/deceleration. A new nondimensional time scaling, <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>t</mi><mo>′</mo></msup><mi>ω</mi></mrow></math></span> (<span><math><mi>ω</mi></math></span> is the frequency of body acceleration) (Singh and Murthy, <em>J. Fluid Mech.</em>, vol. 962, 2023, A42), is employed to capture unsteady effects more effectively, in contrast to the classical scaling <span><math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><msub><mi>D</mi><mi>m</mi></msub><msup><mi>t</mi><mo>′</mo></msup><mo>/</mo><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> (with <span><math><msub><mi>D</mi><mi>m</mi></msub></math></span> as molecular diffusivity and <span><math><mi>R</mi></math></span> as the tube radius) used in earlier works (Rana and Murthy, <em>J. Fluid Mech.</em>, vol. 793, 2016, pp. 877–914). This new framework simplifies the governing equations by preserving the sinusoidal form of the oscillatory pressure gradient, <span><math><mrow><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo>(</mo><mn>1</mn><mo>+</mo><mi>e</mi><mi>sin</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span>, and connects with the classical scaling through the relation <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>×</mo><mrow><mi>S</mi><mi>c</mi></mrow><mo>×</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></math></span>, where <span><math><mi>e</mi></math></span> is the pressure pulsation gradient, <span><math><mi>α</mi></math></span> is the Womersley frequency parameter, and <span><math><mrow><mi>S</mi><mi>c</mi></mrow></math></span> is the Schmidt number. Velocity profiles are obtained for all values of Womersley frequency parameters. Solute transport is analyzed using Aris’ method of moments, considering higher-order measures such as skewness and kurtosis that lead to non-Gaussian concentration profiles. Three solute dispersion regimes are investigated, which are governed by the Péclet number (<span><math><mrow><mi>P</mi><mi>e</mi></mrow></math></span>), Womersley frequency parameters (<span><math><mi>α</mi></math></span>), and the oscillatory Péclet number (<span><math><msup><mi>P</mi><mn>2</mn></msup></math></span>). The oscillatory Péclet number strongly affects the exchange coefficient <span><math><mrow><msub><mi>K</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, and the effect of body acceleration (<span><math><mi>M</mi></math></span>), wall absorption (<span><math><mi>β</mi></math></span>), and other parameters on the convection, dispersion, skewness, and kurtosis coefficients (<span><math><mrow><msub><mi>K</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>–<span><math><mrow><msub><mi>K</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>) are systematically.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"321 ","pages":"Article 122674"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the oscillatory Péclet number and periodic body acceleration on the unsteady Taylor dispersion in a non Newtonian fluid flow in a microvessel\",\"authors\":\"Prem Babu Pal,&nbsp;P.V.S.N. Murthy\",\"doi\":\"10.1016/j.ces.2025.122674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate unsteady solute dispersion in the pulsatile flow of a non-Newtonian Herschel–Bulkley fluid through a circular tube under the influence of periodic body acceleration/deceleration. A new nondimensional time scaling, <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>t</mi><mo>′</mo></msup><mi>ω</mi></mrow></math></span> (<span><math><mi>ω</mi></math></span> is the frequency of body acceleration) (Singh and Murthy, <em>J. Fluid Mech.</em>, vol. 962, 2023, A42), is employed to capture unsteady effects more effectively, in contrast to the classical scaling <span><math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><msub><mi>D</mi><mi>m</mi></msub><msup><mi>t</mi><mo>′</mo></msup><mo>/</mo><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> (with <span><math><msub><mi>D</mi><mi>m</mi></msub></math></span> as molecular diffusivity and <span><math><mi>R</mi></math></span> as the tube radius) used in earlier works (Rana and Murthy, <em>J. Fluid Mech.</em>, vol. 793, 2016, pp. 877–914). This new framework simplifies the governing equations by preserving the sinusoidal form of the oscillatory pressure gradient, <span><math><mrow><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo>(</mo><mn>1</mn><mo>+</mo><mi>e</mi><mi>sin</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span>, and connects with the classical scaling through the relation <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>×</mo><mrow><mi>S</mi><mi>c</mi></mrow><mo>×</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></math></span>, where <span><math><mi>e</mi></math></span> is the pressure pulsation gradient, <span><math><mi>α</mi></math></span> is the Womersley frequency parameter, and <span><math><mrow><mi>S</mi><mi>c</mi></mrow></math></span> is the Schmidt number. Velocity profiles are obtained for all values of Womersley frequency parameters. Solute transport is analyzed using Aris’ method of moments, considering higher-order measures such as skewness and kurtosis that lead to non-Gaussian concentration profiles. Three solute dispersion regimes are investigated, which are governed by the Péclet number (<span><math><mrow><mi>P</mi><mi>e</mi></mrow></math></span>), Womersley frequency parameters (<span><math><mi>α</mi></math></span>), and the oscillatory Péclet number (<span><math><msup><mi>P</mi><mn>2</mn></msup></math></span>). The oscillatory Péclet number strongly affects the exchange coefficient <span><math><mrow><msub><mi>K</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, and the effect of body acceleration (<span><math><mi>M</mi></math></span>), wall absorption (<span><math><mi>β</mi></math></span>), and other parameters on the convection, dispersion, skewness, and kurtosis coefficients (<span><math><mrow><msub><mi>K</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>–<span><math><mrow><msub><mi>K</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>) are systematically.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"321 \",\"pages\":\"Article 122674\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250925014952\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925014952","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了非牛顿赫歇尔-巴克利流体在周期性体加减速影响下通过圆管的脉动流动中溶质的非定常色散。一种新的无量纲时间标度,[数学处理误差]t=t ' ωt=t ' ω([数学处理误差]ω是身体加速度的频率)(Singh和Murthy, J.流体力学。(Rana and Murthy, J. Fluid Mech., vol. 962, 2023, A42),与早期研究中使用的经典标度[Math Processing Error]t1=Dmt ' /R2t1=Dmt ' /R2(以[Math Processing Error]DmDm为分子扩散系数,[Math Processing Error]RR为管半径)相比,可以更有效地捕捉非定常效应。, vol. 793, 2016, pp. 877-914)。该框架通过保留振荡压力梯度的正弦形式来简化控制方程,[数学处理误差]p(t)=2(1+esin(t))p(t)=2(1+esin(t)),并通过[数学处理误差]t=α2×Sc×t1t=α2×Sc×t1关系与经典标度联系起来,其中[数学处理误差]ee为压力脉动梯度,[数学处理误差]αα为Womersley频率参数,[数学处理误差]ScSc为施密特数。得到了所有沃默斯利频率参数值的速度分布。利用Aris的矩量法分析溶质输运,考虑到导致非高斯浓度分布的偏度和峰度等高阶度量。研究了三种溶质色散状态,它们分别由psamiclet数([数学处理错误]PePe)、Womersley频率参数([数学处理错误]αα)和振荡psamiclet数([数学处理错误]P2P2)控制。振荡的p模数强烈影响交换系数[Math Processing Error]K0(t)K0(t),而体加速度([Math Processing Error]MM)、壁面吸收([Math Processing Error]ββ)等参数对对流、色散、偏度和峰度系数([Math Processing Error]K1(t) - [Math Processing Error]K4(t)K4(t))的影响是系统的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the oscillatory Péclet number and periodic body acceleration on the unsteady Taylor dispersion in a non Newtonian fluid flow in a microvessel
In this study, we investigate unsteady solute dispersion in the pulsatile flow of a non-Newtonian Herschel–Bulkley fluid through a circular tube under the influence of periodic body acceleration/deceleration. A new nondimensional time scaling, t=tω (ω is the frequency of body acceleration) (Singh and Murthy, J. Fluid Mech., vol. 962, 2023, A42), is employed to capture unsteady effects more effectively, in contrast to the classical scaling t1=Dmt/R2 (with Dm as molecular diffusivity and R as the tube radius) used in earlier works (Rana and Murthy, J. Fluid Mech., vol. 793, 2016, pp. 877–914). This new framework simplifies the governing equations by preserving the sinusoidal form of the oscillatory pressure gradient, p(t)=2(1+esin(t)), and connects with the classical scaling through the relation t=α2×Sc×t1, where e is the pressure pulsation gradient, α is the Womersley frequency parameter, and Sc is the Schmidt number. Velocity profiles are obtained for all values of Womersley frequency parameters. Solute transport is analyzed using Aris’ method of moments, considering higher-order measures such as skewness and kurtosis that lead to non-Gaussian concentration profiles. Three solute dispersion regimes are investigated, which are governed by the Péclet number (Pe), Womersley frequency parameters (α), and the oscillatory Péclet number (P2). The oscillatory Péclet number strongly affects the exchange coefficient K0(t), and the effect of body acceleration (M), wall absorption (β), and other parameters on the convection, dispersion, skewness, and kurtosis coefficients (K1(t)K4(t)) are systematically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信