{"title":"微容器内非牛顿流体流动中振荡Peclet数和周期体加速度对非定常Taylor色散的影响","authors":"Prem Babu Pal, P.V.S.N. Murthy","doi":"10.1016/j.ces.2025.122674","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate unsteady solute dispersion in the pulsatile flow of a non-Newtonian Herschel–Bulkley fluid through a circular tube under the influence of periodic body acceleration/deceleration. A new nondimensional time scaling, <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>t</mi><mo>′</mo></msup><mi>ω</mi></mrow></math></span> (<span><math><mi>ω</mi></math></span> is the frequency of body acceleration) (Singh and Murthy, <em>J. Fluid Mech.</em>, vol. 962, 2023, A42), is employed to capture unsteady effects more effectively, in contrast to the classical scaling <span><math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><msub><mi>D</mi><mi>m</mi></msub><msup><mi>t</mi><mo>′</mo></msup><mo>/</mo><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> (with <span><math><msub><mi>D</mi><mi>m</mi></msub></math></span> as molecular diffusivity and <span><math><mi>R</mi></math></span> as the tube radius) used in earlier works (Rana and Murthy, <em>J. Fluid Mech.</em>, vol. 793, 2016, pp. 877–914). This new framework simplifies the governing equations by preserving the sinusoidal form of the oscillatory pressure gradient, <span><math><mrow><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo>(</mo><mn>1</mn><mo>+</mo><mi>e</mi><mi>sin</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span>, and connects with the classical scaling through the relation <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>×</mo><mrow><mi>S</mi><mi>c</mi></mrow><mo>×</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></math></span>, where <span><math><mi>e</mi></math></span> is the pressure pulsation gradient, <span><math><mi>α</mi></math></span> is the Womersley frequency parameter, and <span><math><mrow><mi>S</mi><mi>c</mi></mrow></math></span> is the Schmidt number. Velocity profiles are obtained for all values of Womersley frequency parameters. Solute transport is analyzed using Aris’ method of moments, considering higher-order measures such as skewness and kurtosis that lead to non-Gaussian concentration profiles. Three solute dispersion regimes are investigated, which are governed by the Péclet number (<span><math><mrow><mi>P</mi><mi>e</mi></mrow></math></span>), Womersley frequency parameters (<span><math><mi>α</mi></math></span>), and the oscillatory Péclet number (<span><math><msup><mi>P</mi><mn>2</mn></msup></math></span>). The oscillatory Péclet number strongly affects the exchange coefficient <span><math><mrow><msub><mi>K</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, and the effect of body acceleration (<span><math><mi>M</mi></math></span>), wall absorption (<span><math><mi>β</mi></math></span>), and other parameters on the convection, dispersion, skewness, and kurtosis coefficients (<span><math><mrow><msub><mi>K</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>–<span><math><mrow><msub><mi>K</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>) are systematically.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"321 ","pages":"Article 122674"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the oscillatory Péclet number and periodic body acceleration on the unsteady Taylor dispersion in a non Newtonian fluid flow in a microvessel\",\"authors\":\"Prem Babu Pal, P.V.S.N. Murthy\",\"doi\":\"10.1016/j.ces.2025.122674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate unsteady solute dispersion in the pulsatile flow of a non-Newtonian Herschel–Bulkley fluid through a circular tube under the influence of periodic body acceleration/deceleration. A new nondimensional time scaling, <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>t</mi><mo>′</mo></msup><mi>ω</mi></mrow></math></span> (<span><math><mi>ω</mi></math></span> is the frequency of body acceleration) (Singh and Murthy, <em>J. Fluid Mech.</em>, vol. 962, 2023, A42), is employed to capture unsteady effects more effectively, in contrast to the classical scaling <span><math><mrow><msub><mi>t</mi><mn>1</mn></msub><mo>=</mo><msub><mi>D</mi><mi>m</mi></msub><msup><mi>t</mi><mo>′</mo></msup><mo>/</mo><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> (with <span><math><msub><mi>D</mi><mi>m</mi></msub></math></span> as molecular diffusivity and <span><math><mi>R</mi></math></span> as the tube radius) used in earlier works (Rana and Murthy, <em>J. Fluid Mech.</em>, vol. 793, 2016, pp. 877–914). This new framework simplifies the governing equations by preserving the sinusoidal form of the oscillatory pressure gradient, <span><math><mrow><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo>(</mo><mn>1</mn><mo>+</mo><mi>e</mi><mi>sin</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></math></span>, and connects with the classical scaling through the relation <span><math><mrow><mi>t</mi><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>×</mo><mrow><mi>S</mi><mi>c</mi></mrow><mo>×</mo><msub><mi>t</mi><mn>1</mn></msub></mrow></math></span>, where <span><math><mi>e</mi></math></span> is the pressure pulsation gradient, <span><math><mi>α</mi></math></span> is the Womersley frequency parameter, and <span><math><mrow><mi>S</mi><mi>c</mi></mrow></math></span> is the Schmidt number. Velocity profiles are obtained for all values of Womersley frequency parameters. Solute transport is analyzed using Aris’ method of moments, considering higher-order measures such as skewness and kurtosis that lead to non-Gaussian concentration profiles. Three solute dispersion regimes are investigated, which are governed by the Péclet number (<span><math><mrow><mi>P</mi><mi>e</mi></mrow></math></span>), Womersley frequency parameters (<span><math><mi>α</mi></math></span>), and the oscillatory Péclet number (<span><math><msup><mi>P</mi><mn>2</mn></msup></math></span>). The oscillatory Péclet number strongly affects the exchange coefficient <span><math><mrow><msub><mi>K</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, and the effect of body acceleration (<span><math><mi>M</mi></math></span>), wall absorption (<span><math><mi>β</mi></math></span>), and other parameters on the convection, dispersion, skewness, and kurtosis coefficients (<span><math><mrow><msub><mi>K</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>–<span><math><mrow><msub><mi>K</mi><mn>4</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>) are systematically.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"321 \",\"pages\":\"Article 122674\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250925014952\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925014952","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Influence of the oscillatory Péclet number and periodic body acceleration on the unsteady Taylor dispersion in a non Newtonian fluid flow in a microvessel
In this study, we investigate unsteady solute dispersion in the pulsatile flow of a non-Newtonian Herschel–Bulkley fluid through a circular tube under the influence of periodic body acceleration/deceleration. A new nondimensional time scaling, ( is the frequency of body acceleration) (Singh and Murthy, J. Fluid Mech., vol. 962, 2023, A42), is employed to capture unsteady effects more effectively, in contrast to the classical scaling (with as molecular diffusivity and as the tube radius) used in earlier works (Rana and Murthy, J. Fluid Mech., vol. 793, 2016, pp. 877–914). This new framework simplifies the governing equations by preserving the sinusoidal form of the oscillatory pressure gradient, , and connects with the classical scaling through the relation , where is the pressure pulsation gradient, is the Womersley frequency parameter, and is the Schmidt number. Velocity profiles are obtained for all values of Womersley frequency parameters. Solute transport is analyzed using Aris’ method of moments, considering higher-order measures such as skewness and kurtosis that lead to non-Gaussian concentration profiles. Three solute dispersion regimes are investigated, which are governed by the Péclet number (), Womersley frequency parameters (), and the oscillatory Péclet number (). The oscillatory Péclet number strongly affects the exchange coefficient , and the effect of body acceleration (), wall absorption (), and other parameters on the convection, dispersion, skewness, and kurtosis coefficients (–) are systematically.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.