基于机器学习的模型定标在海狸影响的山地洪泛区量化地下水响应和不确定性

IF 5 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Lijing Wang, Tristan Babey, Zach Perzan, Sam Pierce, Martin Briggs, Kristin Boye, Kate Maher
{"title":"基于机器学习的模型定标在海狸影响的山地洪泛区量化地下水响应和不确定性","authors":"Lijing Wang, Tristan Babey, Zach Perzan, Sam Pierce, Martin Briggs, Kristin Boye, Kate Maher","doi":"10.1029/2024wr039192","DOIUrl":null,"url":null,"abstract":"Beavers (<i>Castor canadensis</i>) alter river corridor hydrology by creating ponds and inundating floodplains, and thereby improving surface water storage. However, the impact of inundation on groundwater, particularly in mountainous alluvial floodplains with permeable gravel/cobble layers overlain by a soil layer, remains uncertain. Numerical modeling across various floodplain structures considers topographic and sediment complexity and multidirectional flow, linking inundation to groundwater response. This study develops a model-data integration workflow to address uncertainty in groundwater response to beaver-induced inundations in a mountainous alluvial floodplain in the Upper Colorado River Basin. Uncertain factors include seasonal hydrologic dynamics, hydraulic conductivities, floodplain structures, and meteorological forcings. We employed an ensemble of groundwater models, based on geophysical and hydrologic data, with machine learning-based calibration using a neural density estimator. This allowed us to quantify the vertical flux from the soil layer to the permeable gravel bed, the down-valley underflow within the gravel bed, and their ratios. Results show a significant increase in the vertical flux relative to down-valley underflow, from 2<span data-altimg=\"/cms/asset/3db32cdc-51a3-4073-8788-519bbfe1b9f6/wrcr70383-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"285\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70383-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"percent sign\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70383:wrcr70383-math-0001\" display=\"inline\" location=\"graphic/wrcr70383-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-role=\"unknown\" data-semantic-speech=\"percent sign\" data-semantic-type=\"punctuation\">%</mi></mrow>$\\%$</annotation></semantics></math></mjx-assistive-mml></mjx-container> during dry pond periods to 20<span data-altimg=\"/cms/asset/3bc84b16-2fea-47a4-a9aa-7b033e3ed11b/wrcr70383-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"286\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70383-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"percent sign\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70383:wrcr70383-math-0002\" display=\"inline\" location=\"graphic/wrcr70383-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-role=\"unknown\" data-semantic-speech=\"percent sign\" data-semantic-type=\"punctuation\">%</mi></mrow>$\\%$</annotation></semantics></math></mjx-assistive-mml></mjx-container> during wet periods, serving as an analogy for conditions without and with beaver ponds. The study highlights the influence of floodplain structure on groundwater storage, water balance, and water quality impacted by beaver ponds. A thick gravel bed layer, with a large down-valley underflow, minimizes the effect of beaver-induced inundation on water quality. We emphasize the need for field-scale measurements of floodplain structure and improved characterization of evapotranspiration changes to reduce uncertainty in groundwater response.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"94 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Groundwater Response and Uncertainty in Beaver-Influenced Mountainous Floodplains Using Machine Learning-Based Model Calibration\",\"authors\":\"Lijing Wang, Tristan Babey, Zach Perzan, Sam Pierce, Martin Briggs, Kristin Boye, Kate Maher\",\"doi\":\"10.1029/2024wr039192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beavers (<i>Castor canadensis</i>) alter river corridor hydrology by creating ponds and inundating floodplains, and thereby improving surface water storage. However, the impact of inundation on groundwater, particularly in mountainous alluvial floodplains with permeable gravel/cobble layers overlain by a soil layer, remains uncertain. Numerical modeling across various floodplain structures considers topographic and sediment complexity and multidirectional flow, linking inundation to groundwater response. This study develops a model-data integration workflow to address uncertainty in groundwater response to beaver-induced inundations in a mountainous alluvial floodplain in the Upper Colorado River Basin. Uncertain factors include seasonal hydrologic dynamics, hydraulic conductivities, floodplain structures, and meteorological forcings. We employed an ensemble of groundwater models, based on geophysical and hydrologic data, with machine learning-based calibration using a neural density estimator. This allowed us to quantify the vertical flux from the soil layer to the permeable gravel bed, the down-valley underflow within the gravel bed, and their ratios. Results show a significant increase in the vertical flux relative to down-valley underflow, from 2<span data-altimg=\\\"/cms/asset/3db32cdc-51a3-4073-8788-519bbfe1b9f6/wrcr70383-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"285\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr70383-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"percent sign\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr70383:wrcr70383-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr70383-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"percent sign\\\" data-semantic-type=\\\"punctuation\\\">%</mi></mrow>$\\\\%$</annotation></semantics></math></mjx-assistive-mml></mjx-container> during dry pond periods to 20<span data-altimg=\\\"/cms/asset/3bc84b16-2fea-47a4-a9aa-7b033e3ed11b/wrcr70383-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"286\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr70383-math-0002.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"percent sign\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr70383:wrcr70383-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr70383-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"percent sign\\\" data-semantic-type=\\\"punctuation\\\">%</mi></mrow>$\\\\%$</annotation></semantics></math></mjx-assistive-mml></mjx-container> during wet periods, serving as an analogy for conditions without and with beaver ponds. The study highlights the influence of floodplain structure on groundwater storage, water balance, and water quality impacted by beaver ponds. A thick gravel bed layer, with a large down-valley underflow, minimizes the effect of beaver-induced inundation on water quality. We emphasize the need for field-scale measurements of floodplain structure and improved characterization of evapotranspiration changes to reduce uncertainty in groundwater response.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr039192\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr039192","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海狸(Castor canadensis)通过建造池塘和淹没洪泛区来改变河流走廊的水文,从而改善地表水的储存。然而,洪水对地下水的影响,特别是在具有渗透性砾石/鹅卵石层覆盖土层的山区冲积洪泛平原,仍然不确定。跨越各种洪泛区结构的数值模拟考虑了地形和沉积物的复杂性以及多向流动,将淹没与地下水响应联系起来。本研究开发了一个模型-数据集成工作流程,以解决科罗拉多河上游山区冲积洪泛区地下水对海狸引起的洪水响应的不确定性。不确定因素包括季节水文动力学、水力传导、洪泛区结构和气象强迫。我们采用了基于地球物理和水文数据的地下水模型集合,并使用神经密度估计器进行基于机器学习的校准。这使我们能够量化从土层到透水砾石层的垂直通量,砾石层内的下游潜流,以及它们的比率。结果表明,垂直通量相对于下游底流显著增加,从干塘期的2%$\%$增加到湿塘期的20%$\%$,可以作为有无海狸塘条件的类比。研究强调了河漫滩结构对地下水储存、水平衡和河狸池影响的水质的影响。厚厚的砾石床层,伴随着巨大的下游水流,将海狸引起的洪水对水质的影响降至最低。我们强调需要对洪泛区结构进行现场尺度测量,并改进蒸散发变化的表征,以减少地下水响应的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Groundwater Response and Uncertainty in Beaver-Influenced Mountainous Floodplains Using Machine Learning-Based Model Calibration
Beavers (Castor canadensis) alter river corridor hydrology by creating ponds and inundating floodplains, and thereby improving surface water storage. However, the impact of inundation on groundwater, particularly in mountainous alluvial floodplains with permeable gravel/cobble layers overlain by a soil layer, remains uncertain. Numerical modeling across various floodplain structures considers topographic and sediment complexity and multidirectional flow, linking inundation to groundwater response. This study develops a model-data integration workflow to address uncertainty in groundwater response to beaver-induced inundations in a mountainous alluvial floodplain in the Upper Colorado River Basin. Uncertain factors include seasonal hydrologic dynamics, hydraulic conductivities, floodplain structures, and meteorological forcings. We employed an ensemble of groundwater models, based on geophysical and hydrologic data, with machine learning-based calibration using a neural density estimator. This allowed us to quantify the vertical flux from the soil layer to the permeable gravel bed, the down-valley underflow within the gravel bed, and their ratios. Results show a significant increase in the vertical flux relative to down-valley underflow, from 2%$\%$ during dry pond periods to 20%$\%$ during wet periods, serving as an analogy for conditions without and with beaver ponds. The study highlights the influence of floodplain structure on groundwater storage, water balance, and water quality impacted by beaver ponds. A thick gravel bed layer, with a large down-valley underflow, minimizes the effect of beaver-induced inundation on water quality. We emphasize the need for field-scale measurements of floodplain structure and improved characterization of evapotranspiration changes to reduce uncertainty in groundwater response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信