高性能锂硫电池的先进自相分离电解质。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xu Yao,Zhicheng Wang,Suwan Lu,Haifeng Tu,Jingjing Xu,Xingdong Ma,Kun Liang,Yongbin Lin,Anqi Chen,Sicheng Xu,Ju Ren,Ke Wang,Fengrui Zhang,Jieyun Zheng,Xiaodong Wu,Hong Li
{"title":"高性能锂硫电池的先进自相分离电解质。","authors":"Xu Yao,Zhicheng Wang,Suwan Lu,Haifeng Tu,Jingjing Xu,Xingdong Ma,Kun Liang,Yongbin Lin,Anqi Chen,Sicheng Xu,Ju Ren,Ke Wang,Fengrui Zhang,Jieyun Zheng,Xiaodong Wu,Hong Li","doi":"10.1002/anie.202519315","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur (Li-S) batteries face a critical challenge in synergistically optimizing high-sulfur-loading redox kinetics and suppressing soluble lithium polysulfide (LiPSs) shuttle effects. Herein, we propose a self-phase-separating electrolyte design strategy based on heterogeneous LiPSs dissolution characteristics, using co-solvents of 1,2-dimethoxyethane (DME) and cyclopentyl methyl ether (CPME) to induce spontaneous phase separation during LiPSs dissolution through solvation disparity. The constructed electrolyte system facilitates formation of a strong-solvation region at the cathode to maintain rapid sulfur redox kinetics while establishing a weak-solvation region at the anode to form a stable solid electrolyte interphase (SEI), thereby achieving dual objectives of \"kinetics promotion and shuttle suppression\" via a spatially partitioned dual-zone synergistic mechanism. This strategy enables steady cycling above 170 cycles of single-layer Li-S pouch cells with ultra-thin Li anodes (50 µm) and high-sulfur-loading cathodes (4.3 mgs cm-2). Moreover, under practical lean-electrolyte conditions (6.2 mgs cm-2 sulfur loading, 50 µm Li, 3 µL mgs -1 electrolyte), a 1.8 Ah multi-layer pouch cell delivers 323 Wh kg-1 energy density with stable cycling above 50 cycles. This work provides an effective solution for resolving the critical trade-off between rapid sulfur conversion kinetics and stable anode interfacial behavior in metal-sulfur batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"41 1","pages":"e202519315"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Self-Phase-Separating Electrolytes for High-Performance Lithium-Sulfur Batteries.\",\"authors\":\"Xu Yao,Zhicheng Wang,Suwan Lu,Haifeng Tu,Jingjing Xu,Xingdong Ma,Kun Liang,Yongbin Lin,Anqi Chen,Sicheng Xu,Ju Ren,Ke Wang,Fengrui Zhang,Jieyun Zheng,Xiaodong Wu,Hong Li\",\"doi\":\"10.1002/anie.202519315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-sulfur (Li-S) batteries face a critical challenge in synergistically optimizing high-sulfur-loading redox kinetics and suppressing soluble lithium polysulfide (LiPSs) shuttle effects. Herein, we propose a self-phase-separating electrolyte design strategy based on heterogeneous LiPSs dissolution characteristics, using co-solvents of 1,2-dimethoxyethane (DME) and cyclopentyl methyl ether (CPME) to induce spontaneous phase separation during LiPSs dissolution through solvation disparity. The constructed electrolyte system facilitates formation of a strong-solvation region at the cathode to maintain rapid sulfur redox kinetics while establishing a weak-solvation region at the anode to form a stable solid electrolyte interphase (SEI), thereby achieving dual objectives of \\\"kinetics promotion and shuttle suppression\\\" via a spatially partitioned dual-zone synergistic mechanism. This strategy enables steady cycling above 170 cycles of single-layer Li-S pouch cells with ultra-thin Li anodes (50 µm) and high-sulfur-loading cathodes (4.3 mgs cm-2). Moreover, under practical lean-electrolyte conditions (6.2 mgs cm-2 sulfur loading, 50 µm Li, 3 µL mgs -1 electrolyte), a 1.8 Ah multi-layer pouch cell delivers 323 Wh kg-1 energy density with stable cycling above 50 cycles. This work provides an effective solution for resolving the critical trade-off between rapid sulfur conversion kinetics and stable anode interfacial behavior in metal-sulfur batteries.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"41 1\",\"pages\":\"e202519315\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202519315\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202519315","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(li -硫)电池面临着协同优化高硫负载氧化还原动力学和抑制可溶性多硫锂(LiPSs)穿梭效应的关键挑战。在此,我们提出了一种基于非均相LiPSs溶解特性的自相分离电解质设计策略,使用1,2-二甲氧基乙烷(DME)和环戊基甲基醚(CPME)作为共溶剂,通过溶剂化差异诱导LiPSs溶解过程中的自发相分离。所构建的电解质体系有利于在阴极形成强溶剂化区,维持硫的快速氧化还原动力学,同时在阳极建立弱溶剂化区,形成稳定的固体电解质界面(SEI),通过空间分区的双区协同机制,实现“促进动力学和抑制穿梭”的双重目标。该策略可实现超薄锂阳极(50µm)和高硫负极(4.3 mg cm-2)的单层Li- s袋电池稳定循环170次以上。此外,在实际的贫电解质条件下(6.2 mg cm-2硫负载,50µm锂,3µL mg -1电解质),1.8 Ah多层袋状电池提供323 Wh kg-1能量密度,稳定循环超过50次。这项工作为解决金属硫电池中快速硫转化动力学和稳定阳极界面行为之间的关键权衡提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Self-Phase-Separating Electrolytes for High-Performance Lithium-Sulfur Batteries.
Lithium-sulfur (Li-S) batteries face a critical challenge in synergistically optimizing high-sulfur-loading redox kinetics and suppressing soluble lithium polysulfide (LiPSs) shuttle effects. Herein, we propose a self-phase-separating electrolyte design strategy based on heterogeneous LiPSs dissolution characteristics, using co-solvents of 1,2-dimethoxyethane (DME) and cyclopentyl methyl ether (CPME) to induce spontaneous phase separation during LiPSs dissolution through solvation disparity. The constructed electrolyte system facilitates formation of a strong-solvation region at the cathode to maintain rapid sulfur redox kinetics while establishing a weak-solvation region at the anode to form a stable solid electrolyte interphase (SEI), thereby achieving dual objectives of "kinetics promotion and shuttle suppression" via a spatially partitioned dual-zone synergistic mechanism. This strategy enables steady cycling above 170 cycles of single-layer Li-S pouch cells with ultra-thin Li anodes (50 µm) and high-sulfur-loading cathodes (4.3 mgs cm-2). Moreover, under practical lean-electrolyte conditions (6.2 mgs cm-2 sulfur loading, 50 µm Li, 3 µL mgs -1 electrolyte), a 1.8 Ah multi-layer pouch cell delivers 323 Wh kg-1 energy density with stable cycling above 50 cycles. This work provides an effective solution for resolving the critical trade-off between rapid sulfur conversion kinetics and stable anode interfacial behavior in metal-sulfur batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信