{"title":"真实第一界面在纳米通道离子信号调控中的作用。","authors":"Meihua Lin,Jing Zhao,Xiaoqing Yi,Yuling Xiao,Zhiwei Shang,Lei Xu,Xin Lei,Jing Pan,Yu Huang,Xiaojin Zhang,Fan Xia","doi":"10.1038/s41467-025-62077-2","DOIUrl":null,"url":null,"abstract":"Mass transport through nanochannels involves interactions across six distinct regions, including the \"real first interface\" (RFI), a region formed by functional elements extending into the bulk solution and their surrounding bulk solution. While previous studies have revealed the roles of the bulk solution, outer surface, and inner wall, the contribution of RFI remains unclear due to its susceptibility to interference from neighboring regions, which makes its individual role difficult to isolate. Herein, we show that a diblock DNA probe can be used to independently investigate the RFI by keeping the properties of the other five regions constant. Our results demonstrate that the RFI's role in regulating ionic current in our system is mainly determined by charge effects. These findings highlight the distinct and previously underappreciated role of the RFI in nanochannel transport and suggest that resolving its function may provide the final piece in understanding ion transport mechanisms in confined systems.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"57 1","pages":"8360"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of the real first interface in regulating ionic signal of nanochannels.\",\"authors\":\"Meihua Lin,Jing Zhao,Xiaoqing Yi,Yuling Xiao,Zhiwei Shang,Lei Xu,Xin Lei,Jing Pan,Yu Huang,Xiaojin Zhang,Fan Xia\",\"doi\":\"10.1038/s41467-025-62077-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass transport through nanochannels involves interactions across six distinct regions, including the \\\"real first interface\\\" (RFI), a region formed by functional elements extending into the bulk solution and their surrounding bulk solution. While previous studies have revealed the roles of the bulk solution, outer surface, and inner wall, the contribution of RFI remains unclear due to its susceptibility to interference from neighboring regions, which makes its individual role difficult to isolate. Herein, we show that a diblock DNA probe can be used to independently investigate the RFI by keeping the properties of the other five regions constant. Our results demonstrate that the RFI's role in regulating ionic current in our system is mainly determined by charge effects. These findings highlight the distinct and previously underappreciated role of the RFI in nanochannel transport and suggest that resolving its function may provide the final piece in understanding ion transport mechanisms in confined systems.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"57 1\",\"pages\":\"8360\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62077-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62077-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Role of the real first interface in regulating ionic signal of nanochannels.
Mass transport through nanochannels involves interactions across six distinct regions, including the "real first interface" (RFI), a region formed by functional elements extending into the bulk solution and their surrounding bulk solution. While previous studies have revealed the roles of the bulk solution, outer surface, and inner wall, the contribution of RFI remains unclear due to its susceptibility to interference from neighboring regions, which makes its individual role difficult to isolate. Herein, we show that a diblock DNA probe can be used to independently investigate the RFI by keeping the properties of the other five regions constant. Our results demonstrate that the RFI's role in regulating ionic current in our system is mainly determined by charge effects. These findings highlight the distinct and previously underappreciated role of the RFI in nanochannel transport and suggest that resolving its function may provide the final piece in understanding ion transport mechanisms in confined systems.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.