{"title":"体内和体外心脏发生的协调性。","authors":"Sasha Mendjan,Alison Deyett,Deborah Yelon","doi":"10.1038/s41580-025-00878-5","DOIUrl":null,"url":null,"abstract":"Heart development has been extensively explored on the anatomical, cellular and molecular levels. Yet, the intricate interplay of tissue organization, cellular lineages and molecular factors that orchestrate heart development, culminating in forming a seamlessly synchronized functional heart, remains challenging to investigate. Mechanistic studies conducted both in vivo using animal models and in vitro stem-cell-derived systems aim to unravel this complexity. In this Review, we discuss how the recent surge in technological advancements in imaging and genomics, coupled with the evolution of next-generation cardiac organoid models, has provided profound insights into these processes, holding significant implications for the development of novel therapies for congenital or acquired heart diseases. We discuss the development of the heart as the first functional organ - from the morphogenesis of the mesoderm, heart tube and cardiac chambers to the establishment of the initial heartbeat and pacemaker and further how morphogenesis and function collaboratively drive heart maturation.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"94 1","pages":""},"PeriodicalIF":90.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordination of cardiogenesis in vivo and in vitro.\",\"authors\":\"Sasha Mendjan,Alison Deyett,Deborah Yelon\",\"doi\":\"10.1038/s41580-025-00878-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart development has been extensively explored on the anatomical, cellular and molecular levels. Yet, the intricate interplay of tissue organization, cellular lineages and molecular factors that orchestrate heart development, culminating in forming a seamlessly synchronized functional heart, remains challenging to investigate. Mechanistic studies conducted both in vivo using animal models and in vitro stem-cell-derived systems aim to unravel this complexity. In this Review, we discuss how the recent surge in technological advancements in imaging and genomics, coupled with the evolution of next-generation cardiac organoid models, has provided profound insights into these processes, holding significant implications for the development of novel therapies for congenital or acquired heart diseases. We discuss the development of the heart as the first functional organ - from the morphogenesis of the mesoderm, heart tube and cardiac chambers to the establishment of the initial heartbeat and pacemaker and further how morphogenesis and function collaboratively drive heart maturation.\",\"PeriodicalId\":19051,\"journal\":{\"name\":\"Nature Reviews Molecular Cell Biology\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":90.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41580-025-00878-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41580-025-00878-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Coordination of cardiogenesis in vivo and in vitro.
Heart development has been extensively explored on the anatomical, cellular and molecular levels. Yet, the intricate interplay of tissue organization, cellular lineages and molecular factors that orchestrate heart development, culminating in forming a seamlessly synchronized functional heart, remains challenging to investigate. Mechanistic studies conducted both in vivo using animal models and in vitro stem-cell-derived systems aim to unravel this complexity. In this Review, we discuss how the recent surge in technological advancements in imaging and genomics, coupled with the evolution of next-generation cardiac organoid models, has provided profound insights into these processes, holding significant implications for the development of novel therapies for congenital or acquired heart diseases. We discuss the development of the heart as the first functional organ - from the morphogenesis of the mesoderm, heart tube and cardiac chambers to the establishment of the initial heartbeat and pacemaker and further how morphogenesis and function collaboratively drive heart maturation.
期刊介绍:
Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.