使用增强型暹罗网络方法交叉比较赤脚和穿袜子的足迹证据。

IF 1.8
Yangbo Li, Baien Guo, Yao Shen, Shuliang Hu, Zhihui Li, Lei Yang, Yuxin Wei
{"title":"使用增强型暹罗网络方法交叉比较赤脚和穿袜子的足迹证据。","authors":"Yangbo Li, Baien Guo, Yao Shen, Shuliang Hu, Zhihui Li, Lei Yang, Yuxin Wei","doi":"10.1111/1556-4029.70180","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional barefoot impression examination faces significant limitations in comparing impressions with sock-clad impressions. This paper presents the first cross-comparison study of barefoot and sock-clad impressions in challenging mixed datasets. We propose an enhanced Siamese network approach for the cross-comparison of barefoot and sock-clad impression evidence. Our methodology employs a dual-branch feature extraction framework based on ResNet34, enhanced with a channel-level generalized mean (GeM) pooling strategy and metric learning through hard sample mining. Research utilized 800 right footprint samples from 800 participants, augmented with 800 left footprint samples generated through mirror transformation, totaling 1600 samples for evaluation. Experimental results demonstrate that the proposed method achieves 63.4% Top-1 accuracy and 90.9% Top-10 accuracy in challenging mixed retrieval environments. The ResNet34 architecture with improved GeM pooling showed superior performance compared to alternative network architectures and pooling strategies. This research addresses critical challenges in the comparison of sock-clad impressions to barefoot impressions, particularly for cases where perpetrators wear socks to minimize distinctive impression evidence and sounds in burglary, homicide, and other crimes, providing a more objective, quantifiable automatic comparison method for barefoot and sock-clad impression identification with substantial practical value for criminal investigations.</p>","PeriodicalId":94080,"journal":{"name":"Journal of forensic sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-comparison of barefoot and sock-clad footprint evidence using an enhanced Siamese network approach.\",\"authors\":\"Yangbo Li, Baien Guo, Yao Shen, Shuliang Hu, Zhihui Li, Lei Yang, Yuxin Wei\",\"doi\":\"10.1111/1556-4029.70180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional barefoot impression examination faces significant limitations in comparing impressions with sock-clad impressions. This paper presents the first cross-comparison study of barefoot and sock-clad impressions in challenging mixed datasets. We propose an enhanced Siamese network approach for the cross-comparison of barefoot and sock-clad impression evidence. Our methodology employs a dual-branch feature extraction framework based on ResNet34, enhanced with a channel-level generalized mean (GeM) pooling strategy and metric learning through hard sample mining. Research utilized 800 right footprint samples from 800 participants, augmented with 800 left footprint samples generated through mirror transformation, totaling 1600 samples for evaluation. Experimental results demonstrate that the proposed method achieves 63.4% Top-1 accuracy and 90.9% Top-10 accuracy in challenging mixed retrieval environments. The ResNet34 architecture with improved GeM pooling showed superior performance compared to alternative network architectures and pooling strategies. This research addresses critical challenges in the comparison of sock-clad impressions to barefoot impressions, particularly for cases where perpetrators wear socks to minimize distinctive impression evidence and sounds in burglary, homicide, and other crimes, providing a more objective, quantifiable automatic comparison method for barefoot and sock-clad impression identification with substantial practical value for criminal investigations.</p>\",\"PeriodicalId\":94080,\"journal\":{\"name\":\"Journal of forensic sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forensic sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/1556-4029.70180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/1556-4029.70180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的光脚印痕检查在印痕与穿袜子印痕的比较上存在明显的局限性。本文提出了赤脚和穿袜子的印象在具有挑战性的混合数据集的首次交叉比较研究。我们提出了一种增强的暹罗网络方法来交叉比较赤脚和穿袜子的印象证据。我们的方法采用了基于ResNet34的双分支特征提取框架,并通过硬样本挖掘增强了通道级广义均值(GeM)池化策略和度量学习。研究利用800名参与者的800个右足迹样本,加上镜像变换生成的800个左足迹样本,共1600个样本进行评估。实验结果表明,该方法在具有挑战性的混合检索环境下,Top-1准确率为63.4%,Top-10准确率为90.9%。与其他网络架构和池化策略相比,具有改进GeM池化的ResNet34架构表现出卓越的性能。本研究解决了穿袜子印痕与赤脚印痕比较中的关键挑战,特别是在入室盗窃、杀人等犯罪中,犯罪者为了减少独特的印痕证据和声音而穿袜子的情况下,为赤脚印痕与穿袜子印痕的识别提供了一种更客观、可量化的自动比较方法,对刑事侦查具有重要的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-comparison of barefoot and sock-clad footprint evidence using an enhanced Siamese network approach.

Traditional barefoot impression examination faces significant limitations in comparing impressions with sock-clad impressions. This paper presents the first cross-comparison study of barefoot and sock-clad impressions in challenging mixed datasets. We propose an enhanced Siamese network approach for the cross-comparison of barefoot and sock-clad impression evidence. Our methodology employs a dual-branch feature extraction framework based on ResNet34, enhanced with a channel-level generalized mean (GeM) pooling strategy and metric learning through hard sample mining. Research utilized 800 right footprint samples from 800 participants, augmented with 800 left footprint samples generated through mirror transformation, totaling 1600 samples for evaluation. Experimental results demonstrate that the proposed method achieves 63.4% Top-1 accuracy and 90.9% Top-10 accuracy in challenging mixed retrieval environments. The ResNet34 architecture with improved GeM pooling showed superior performance compared to alternative network architectures and pooling strategies. This research addresses critical challenges in the comparison of sock-clad impressions to barefoot impressions, particularly for cases where perpetrators wear socks to minimize distinctive impression evidence and sounds in burglary, homicide, and other crimes, providing a more objective, quantifiable automatic comparison method for barefoot and sock-clad impression identification with substantial practical value for criminal investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信