Wusa Makena, Aisha Aminu, Onyinoyi Bethel Onimisi, John Tabakwot Ayuba, Gidok Kogi Abednego, Victor Kayode Jerome, Abel Yashim Solomon, Barka Ishaku
{"title":"亚砷酸盐和高脂肪饮食诱导的脑应激中核仁提取物的神经保护作用。","authors":"Wusa Makena, Aisha Aminu, Onyinoyi Bethel Onimisi, John Tabakwot Ayuba, Gidok Kogi Abednego, Victor Kayode Jerome, Abel Yashim Solomon, Barka Ishaku","doi":"10.5620/eaht.2025016","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium arsenite (NaAsO2) and high fat diet (HFD) are already documented to provoke oxidative stress, neuro inflammation and learning and memory deficits. This work aimed to determine the possible neuroprotection of the root extract of Nauclea latifolia (NlREq) against NaAsO2/HFD induced neurotoxicity in Wistar rats. Twenty-five rats were divided into five groups: groups include control; NaAsO2/HFD treated; NaAsO2/HFD + NlREq at 200 mg /kg and 400 mg/kg; and NaAsO2/HFD treated with silymar in at the dose of 50 mg/kg. The behavioral assessments (elevated plus maze and T-maze), biochemical analysis and histological investigations were performed. As shown in the present study, NaAsO2/HFD group exhibited enhanced anxiety related behaviour, memory deficit, oxidative stress (MDA, TNF-α, IL-1β) and decreased antioxidant enzymes (SOD, CAT, GSH) activity. The histological examination revealed significant neuronal loss and remarkable architectural alteration in hippocampus, prefrontal cortex and cerebellum. These effects were ameliorated by NlREq administered in a dose-dependent manner, with the 400 mg/kg dose enhancing memory in the affected animals, reducing inflammation, replenishing antioxidant defence systems, and maintaining integrity of neurons. These results indicate that Nauclea latifolia root extract has strong neuroprotective potential and may be used as a phytochemical for managing neurotoxicity and cognitive impairment due to exposure to toxins in the environment and poor diet.</p>","PeriodicalId":101307,"journal":{"name":"Environmental analysis, health and toxicology","volume":"40 2","pages":"e2025016-0"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotection by Nauclea latifolia extract in arsenite & high-fat diet-induced brain stress.\",\"authors\":\"Wusa Makena, Aisha Aminu, Onyinoyi Bethel Onimisi, John Tabakwot Ayuba, Gidok Kogi Abednego, Victor Kayode Jerome, Abel Yashim Solomon, Barka Ishaku\",\"doi\":\"10.5620/eaht.2025016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sodium arsenite (NaAsO2) and high fat diet (HFD) are already documented to provoke oxidative stress, neuro inflammation and learning and memory deficits. This work aimed to determine the possible neuroprotection of the root extract of Nauclea latifolia (NlREq) against NaAsO2/HFD induced neurotoxicity in Wistar rats. Twenty-five rats were divided into five groups: groups include control; NaAsO2/HFD treated; NaAsO2/HFD + NlREq at 200 mg /kg and 400 mg/kg; and NaAsO2/HFD treated with silymar in at the dose of 50 mg/kg. The behavioral assessments (elevated plus maze and T-maze), biochemical analysis and histological investigations were performed. As shown in the present study, NaAsO2/HFD group exhibited enhanced anxiety related behaviour, memory deficit, oxidative stress (MDA, TNF-α, IL-1β) and decreased antioxidant enzymes (SOD, CAT, GSH) activity. The histological examination revealed significant neuronal loss and remarkable architectural alteration in hippocampus, prefrontal cortex and cerebellum. These effects were ameliorated by NlREq administered in a dose-dependent manner, with the 400 mg/kg dose enhancing memory in the affected animals, reducing inflammation, replenishing antioxidant defence systems, and maintaining integrity of neurons. These results indicate that Nauclea latifolia root extract has strong neuroprotective potential and may be used as a phytochemical for managing neurotoxicity and cognitive impairment due to exposure to toxins in the environment and poor diet.</p>\",\"PeriodicalId\":101307,\"journal\":{\"name\":\"Environmental analysis, health and toxicology\",\"volume\":\"40 2\",\"pages\":\"e2025016-0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental analysis, health and toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5620/eaht.2025016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental analysis, health and toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5620/eaht.2025016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Neuroprotection by Nauclea latifolia extract in arsenite & high-fat diet-induced brain stress.
Sodium arsenite (NaAsO2) and high fat diet (HFD) are already documented to provoke oxidative stress, neuro inflammation and learning and memory deficits. This work aimed to determine the possible neuroprotection of the root extract of Nauclea latifolia (NlREq) against NaAsO2/HFD induced neurotoxicity in Wistar rats. Twenty-five rats were divided into five groups: groups include control; NaAsO2/HFD treated; NaAsO2/HFD + NlREq at 200 mg /kg and 400 mg/kg; and NaAsO2/HFD treated with silymar in at the dose of 50 mg/kg. The behavioral assessments (elevated plus maze and T-maze), biochemical analysis and histological investigations were performed. As shown in the present study, NaAsO2/HFD group exhibited enhanced anxiety related behaviour, memory deficit, oxidative stress (MDA, TNF-α, IL-1β) and decreased antioxidant enzymes (SOD, CAT, GSH) activity. The histological examination revealed significant neuronal loss and remarkable architectural alteration in hippocampus, prefrontal cortex and cerebellum. These effects were ameliorated by NlREq administered in a dose-dependent manner, with the 400 mg/kg dose enhancing memory in the affected animals, reducing inflammation, replenishing antioxidant defence systems, and maintaining integrity of neurons. These results indicate that Nauclea latifolia root extract has strong neuroprotective potential and may be used as a phytochemical for managing neurotoxicity and cognitive impairment due to exposure to toxins in the environment and poor diet.