弱监督肽- tcr结合预测有助于新抗原鉴定。

IF 7.7
Yuli Gao, Yicheng Gao, Siqi Wu, Danlu Li, Chi Zhou, Fangliangzi Meng, Kejing Dong, Xueying Zhao, Ping Li, Aibin Liang, Qi Liu
{"title":"弱监督肽- tcr结合预测有助于新抗原鉴定。","authors":"Yuli Gao, Yicheng Gao, Siqi Wu, Danlu Li, Chi Zhou, Fangliangzi Meng, Kejing Dong, Xueying Zhao, Ping Li, Aibin Liang, Qi Liu","doi":"10.1016/j.cels.2025.101403","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of T cell neoantigens is fundamental and computationally challenging in tumor immunotherapy study. Current prediction methods mainly focus on peptide properties, human leukocyte antigen (HLA) binding affinity, or single peptide-major histocompatibility complex-T cell receptor (pMHC-TCR) interactions, often overlooking the patient-specific TCR profile in evaluating neoantigen immunogenicity. This limited scope has constrained the performance and application of these tools in real-world settings for neoantigen identification. To address these limitations, we developed \"TCRBagger,\" a weakly supervised learning framework that uses the bagging of sample-specific TCR profiles to enhance personalized neoantigen identification. TCRBagger integrates three learning strategies-self-supervised, denoising, and multi-instance learning (MIL)-for modeling peptide-TCR binding to identify immunogenic neoantigens. Our comprehensive tests and applications reveal that TCRBagger outperforms existing tools by modeling peptide-TCR profile interactions, accordingly enhancing the capability of immunogenic neoantigen identification. Collectively, TCRBagger provides an unprecedented perspective and methodology for modeling the interaction between a peptide and patient-specific TCR profiles, facilitating neoantigen identification for personalized tumor immunotherapy. A record of this paper's Transparent Peer Review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101403"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly supervised peptide-TCR binding prediction facilitates neoantigen identification.\",\"authors\":\"Yuli Gao, Yicheng Gao, Siqi Wu, Danlu Li, Chi Zhou, Fangliangzi Meng, Kejing Dong, Xueying Zhao, Ping Li, Aibin Liang, Qi Liu\",\"doi\":\"10.1016/j.cels.2025.101403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The identification of T cell neoantigens is fundamental and computationally challenging in tumor immunotherapy study. Current prediction methods mainly focus on peptide properties, human leukocyte antigen (HLA) binding affinity, or single peptide-major histocompatibility complex-T cell receptor (pMHC-TCR) interactions, often overlooking the patient-specific TCR profile in evaluating neoantigen immunogenicity. This limited scope has constrained the performance and application of these tools in real-world settings for neoantigen identification. To address these limitations, we developed \\\"TCRBagger,\\\" a weakly supervised learning framework that uses the bagging of sample-specific TCR profiles to enhance personalized neoantigen identification. TCRBagger integrates three learning strategies-self-supervised, denoising, and multi-instance learning (MIL)-for modeling peptide-TCR binding to identify immunogenic neoantigens. Our comprehensive tests and applications reveal that TCRBagger outperforms existing tools by modeling peptide-TCR profile interactions, accordingly enhancing the capability of immunogenic neoantigen identification. Collectively, TCRBagger provides an unprecedented perspective and methodology for modeling the interaction between a peptide and patient-specific TCR profiles, facilitating neoantigen identification for personalized tumor immunotherapy. A record of this paper's Transparent Peer Review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101403\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

T细胞新抗原的鉴定是肿瘤免疫治疗研究的基础和计算挑战。目前的预测方法主要集中在肽特性、人白细胞抗原(HLA)结合亲和力或单肽-主要组织相容性复合物- t细胞受体(pMHC-TCR)相互作用上,在评估新抗原免疫原性时往往忽略了患者特异性TCR谱。这种有限的范围限制了这些工具在实际环境中用于新抗原鉴定的性能和应用。为了解决这些限制,我们开发了“TCRBagger”,这是一个弱监督学习框架,使用样本特异性TCR档案的装袋来增强个性化的新抗原识别。TCRBagger集成了三种学习策略-自我监督,去噪和多实例学习(MIL)-用于建模肽- tcr结合以识别免疫原性新抗原。我们的综合测试和应用表明,TCRBagger在模拟肽- tcr谱相互作用方面优于现有工具,从而增强了免疫原性新抗原识别的能力。总的来说,TCRBagger为多肽和患者特异性TCR谱之间的相互作用建模提供了前所未有的视角和方法,促进了个性化肿瘤免疫治疗的新抗原鉴定。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly supervised peptide-TCR binding prediction facilitates neoantigen identification.

The identification of T cell neoantigens is fundamental and computationally challenging in tumor immunotherapy study. Current prediction methods mainly focus on peptide properties, human leukocyte antigen (HLA) binding affinity, or single peptide-major histocompatibility complex-T cell receptor (pMHC-TCR) interactions, often overlooking the patient-specific TCR profile in evaluating neoantigen immunogenicity. This limited scope has constrained the performance and application of these tools in real-world settings for neoantigen identification. To address these limitations, we developed "TCRBagger," a weakly supervised learning framework that uses the bagging of sample-specific TCR profiles to enhance personalized neoantigen identification. TCRBagger integrates three learning strategies-self-supervised, denoising, and multi-instance learning (MIL)-for modeling peptide-TCR binding to identify immunogenic neoantigens. Our comprehensive tests and applications reveal that TCRBagger outperforms existing tools by modeling peptide-TCR profile interactions, accordingly enhancing the capability of immunogenic neoantigen identification. Collectively, TCRBagger provides an unprecedented perspective and methodology for modeling the interaction between a peptide and patient-specific TCR profiles, facilitating neoantigen identification for personalized tumor immunotherapy. A record of this paper's Transparent Peer Review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信