Daniel B Reeves, Danielle N Rigau, Arianna Romero, Hao Zhang, Francesco R Simonetti, Joseph Varriale, Rebecca Hoh, Li Zhang, Kellie N Smith, Luis J Montaner, Leah H Rubin, Stephen J Gange, Nadia R Roan, Phyllis C Tien, Joseph B Margolick, Michael J Peluso, Steven G Deeks, Joshua T Schiffer, Janet D Siliciano, Robert F Siliciano, Annukka A R Antar
{"title":"轻微的HIV特异性选择力覆盖自然CD4+ T细胞动力学解释了HIV储存库细胞的克隆和衰变动力学。","authors":"Daniel B Reeves, Danielle N Rigau, Arianna Romero, Hao Zhang, Francesco R Simonetti, Joseph Varriale, Rebecca Hoh, Li Zhang, Kellie N Smith, Luis J Montaner, Leah H Rubin, Stephen J Gange, Nadia R Roan, Phyllis C Tien, Joseph B Margolick, Michael J Peluso, Steven G Deeks, Joshua T Schiffer, Janet D Siliciano, Robert F Siliciano, Annukka A R Antar","doi":"10.1016/j.cels.2025.101402","DOIUrl":null,"url":null,"abstract":"<p><p>To determine whether HIV persistence arises from the natural dynamics of memory (m)CD4+ T cells, we compare clonal dynamics of HIV proviruses and mCD4+ T cells from the same people living with HIV (PWH) on antiretroviral therapy and from matched HIV-seronegative people (N = 51). HIV proviruses are more clonal than mCD4+ T cells but similarly clonal to antigen-specific cells. Increasing reservoir clonality over time and differential decay of intact and defective proviruses are not explained by mCD4+ T cell kinetics alone. We develop and validate a stochastic model trained on 10 quantitative data metrics, which shows that negative selection against HIV-infected cells is necessary to explain all metrics. We estimate the strength of negative selection, finding that death of cells harboring intact and defective proviruses is infrequently (∼6% and ∼2% on average) due to HIV-specific factors. Thus, our data indicate that HIV persistence is mostly, but not entirely, driven by natural mCD4+ kinetics.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101402"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mild HIV-specific selective forces overlaying natural CD4+ T cell dynamics explain the clonality and decay dynamics of HIV reservoir cells.\",\"authors\":\"Daniel B Reeves, Danielle N Rigau, Arianna Romero, Hao Zhang, Francesco R Simonetti, Joseph Varriale, Rebecca Hoh, Li Zhang, Kellie N Smith, Luis J Montaner, Leah H Rubin, Stephen J Gange, Nadia R Roan, Phyllis C Tien, Joseph B Margolick, Michael J Peluso, Steven G Deeks, Joshua T Schiffer, Janet D Siliciano, Robert F Siliciano, Annukka A R Antar\",\"doi\":\"10.1016/j.cels.2025.101402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To determine whether HIV persistence arises from the natural dynamics of memory (m)CD4+ T cells, we compare clonal dynamics of HIV proviruses and mCD4+ T cells from the same people living with HIV (PWH) on antiretroviral therapy and from matched HIV-seronegative people (N = 51). HIV proviruses are more clonal than mCD4+ T cells but similarly clonal to antigen-specific cells. Increasing reservoir clonality over time and differential decay of intact and defective proviruses are not explained by mCD4+ T cell kinetics alone. We develop and validate a stochastic model trained on 10 quantitative data metrics, which shows that negative selection against HIV-infected cells is necessary to explain all metrics. We estimate the strength of negative selection, finding that death of cells harboring intact and defective proviruses is infrequently (∼6% and ∼2% on average) due to HIV-specific factors. Thus, our data indicate that HIV persistence is mostly, but not entirely, driven by natural mCD4+ kinetics.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101402\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mild HIV-specific selective forces overlaying natural CD4+ T cell dynamics explain the clonality and decay dynamics of HIV reservoir cells.
To determine whether HIV persistence arises from the natural dynamics of memory (m)CD4+ T cells, we compare clonal dynamics of HIV proviruses and mCD4+ T cells from the same people living with HIV (PWH) on antiretroviral therapy and from matched HIV-seronegative people (N = 51). HIV proviruses are more clonal than mCD4+ T cells but similarly clonal to antigen-specific cells. Increasing reservoir clonality over time and differential decay of intact and defective proviruses are not explained by mCD4+ T cell kinetics alone. We develop and validate a stochastic model trained on 10 quantitative data metrics, which shows that negative selection against HIV-infected cells is necessary to explain all metrics. We estimate the strength of negative selection, finding that death of cells harboring intact and defective proviruses is infrequently (∼6% and ∼2% on average) due to HIV-specific factors. Thus, our data indicate that HIV persistence is mostly, but not entirely, driven by natural mCD4+ kinetics.