Phuoc Thanh Tran-Ngoc, Kewei Song, Thu Ha Tran, Kazuki Kai, Qifeng Lin, Hirotaka Sato
{"title":"通过多材料3D打印制造的具有表面刺激器的人体工程学昆虫头饰和腹部扣:电子昆虫的无创感觉刺激器的快速安全安装。","authors":"Phuoc Thanh Tran-Ngoc, Kewei Song, Thu Ha Tran, Kazuki Kai, Qifeng Lin, Hirotaka Sato","doi":"10.34133/cbsystems.0406","DOIUrl":null,"url":null,"abstract":"<p><p>Insects have been integrated with electronic systems to create cyborg insects for various practical applications by utilizing their inherent adaptability and mobility. Nevertheless, most cyborg insects' preparation depends on the invasive method, which can cause harm to critical sensory organs and restrict the obstacle-negotiating capabilities of cyborg insects. We present wearable devices with headgear and abdominal buckle that address these challenges using hooking mechanisms, multimaterial 3-dimensional printing, and selective electroless plating. These devices attach securely to the antenna scape and abdominal tergum without damaging functional organs, thereby preserving the insect's natural sensory functions and physical intactness. Besides, the electrodes attach and detach easily without using adhesives, reducing the time required for cyborg insect preparation and enabling the reuse of insects. Experiments show that cyborg insects with wearable devices spend less time traversing obstacles than those prepared using invasive methods. Additionally, the potential for practical navigation tasks is further demonstrated by the cyborg insect's capacity to navigate along the \"S\"-path. This work advances scalable, efficient, and ethical utilization of cyborg insects in the fields of robotics and biohybrid systems.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0406"},"PeriodicalIF":18.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ergonomic Insect Headgear and Abdominal Buckle with Surface Stimulators Manufactured via Multimaterial 3D Printing: Snap-and-Secure Installation of Noninvasive Sensory Stimulators for Cyborg Insects.\",\"authors\":\"Phuoc Thanh Tran-Ngoc, Kewei Song, Thu Ha Tran, Kazuki Kai, Qifeng Lin, Hirotaka Sato\",\"doi\":\"10.34133/cbsystems.0406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insects have been integrated with electronic systems to create cyborg insects for various practical applications by utilizing their inherent adaptability and mobility. Nevertheless, most cyborg insects' preparation depends on the invasive method, which can cause harm to critical sensory organs and restrict the obstacle-negotiating capabilities of cyborg insects. We present wearable devices with headgear and abdominal buckle that address these challenges using hooking mechanisms, multimaterial 3-dimensional printing, and selective electroless plating. These devices attach securely to the antenna scape and abdominal tergum without damaging functional organs, thereby preserving the insect's natural sensory functions and physical intactness. Besides, the electrodes attach and detach easily without using adhesives, reducing the time required for cyborg insect preparation and enabling the reuse of insects. Experiments show that cyborg insects with wearable devices spend less time traversing obstacles than those prepared using invasive methods. Additionally, the potential for practical navigation tasks is further demonstrated by the cyborg insect's capacity to navigate along the \\\"S\\\"-path. This work advances scalable, efficient, and ethical utilization of cyborg insects in the fields of robotics and biohybrid systems.</p>\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\"6 \",\"pages\":\"0406\"},\"PeriodicalIF\":18.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/cbsystems.0406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Ergonomic Insect Headgear and Abdominal Buckle with Surface Stimulators Manufactured via Multimaterial 3D Printing: Snap-and-Secure Installation of Noninvasive Sensory Stimulators for Cyborg Insects.
Insects have been integrated with electronic systems to create cyborg insects for various practical applications by utilizing their inherent adaptability and mobility. Nevertheless, most cyborg insects' preparation depends on the invasive method, which can cause harm to critical sensory organs and restrict the obstacle-negotiating capabilities of cyborg insects. We present wearable devices with headgear and abdominal buckle that address these challenges using hooking mechanisms, multimaterial 3-dimensional printing, and selective electroless plating. These devices attach securely to the antenna scape and abdominal tergum without damaging functional organs, thereby preserving the insect's natural sensory functions and physical intactness. Besides, the electrodes attach and detach easily without using adhesives, reducing the time required for cyborg insect preparation and enabling the reuse of insects. Experiments show that cyborg insects with wearable devices spend less time traversing obstacles than those prepared using invasive methods. Additionally, the potential for practical navigation tasks is further demonstrated by the cyborg insect's capacity to navigate along the "S"-path. This work advances scalable, efficient, and ethical utilization of cyborg insects in the fields of robotics and biohybrid systems.