{"title":"捕食者介导的表观竞争的影响和生物学后果I: ODE模型。","authors":"Yuan Lou, Weirun Tao, Zhi-An Wang","doi":"10.1007/s00285-025-02286-x","DOIUrl":null,"url":null,"abstract":"<p><p>Predator-mediated apparent competition is an indirect negative interaction between two prey species mediated by a shared predator, which can lead to changes in population dynamics, competition outcomes and community structures. This paper is devoted to investigating the effects and biological consequences of the predator-mediated apparent competition based on a two prey species (one is native and the other is invasive) and one predator model with Holling type I and II functional responses. Through the analytical results and case studies alongside numerical simulations, we find that the initial mass of the invasive prey species, capture rates of prey species, and the predator mortality rate are all important factors determining the success/failure of invasions and the species coexistence/extinction. The global dynamics can be completely classified for the Holling type I functional response, but can only be partially determined for the Holling type II functional response. For the Holling type I functional response, we find that whether the invasive prey species can successfully invade to induce the predator-mediated apparent competition is entirely determined by the capture rates of prey species. For the Holling type II functional response, the dynamics are more complicated. First, if two prey species have the same ecological characteristics, then the initial mass of the invasive prey species is the key factor determining the success/failure of the invasion and hence the effect of the predator-mediated apparent competition. Whereas if two prey species have different ecological characteristics, say different capture rates, then the success of the invasion no longer depends on the initial mass of the invasive prey species, but on the capture rates. In all cases, if the invasion succeeds, then the predator-mediated apparent competition's effectiveness essentially depends on the predator mortality rate. Precisely we show that the native prey species will die out (resp. persist) if the predator has a low (resp. moderate) mortality rate, while the predator will go extinct if it has a large mortality rate. Our study reveals that predator-mediated apparent competition is a complicated ecological process, and its effects and biological consequences depend upon many possible factors.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 5","pages":"47"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460439/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects and biological consequences of the predator-mediated apparent competition I: ODE models.\",\"authors\":\"Yuan Lou, Weirun Tao, Zhi-An Wang\",\"doi\":\"10.1007/s00285-025-02286-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predator-mediated apparent competition is an indirect negative interaction between two prey species mediated by a shared predator, which can lead to changes in population dynamics, competition outcomes and community structures. This paper is devoted to investigating the effects and biological consequences of the predator-mediated apparent competition based on a two prey species (one is native and the other is invasive) and one predator model with Holling type I and II functional responses. Through the analytical results and case studies alongside numerical simulations, we find that the initial mass of the invasive prey species, capture rates of prey species, and the predator mortality rate are all important factors determining the success/failure of invasions and the species coexistence/extinction. The global dynamics can be completely classified for the Holling type I functional response, but can only be partially determined for the Holling type II functional response. For the Holling type I functional response, we find that whether the invasive prey species can successfully invade to induce the predator-mediated apparent competition is entirely determined by the capture rates of prey species. For the Holling type II functional response, the dynamics are more complicated. First, if two prey species have the same ecological characteristics, then the initial mass of the invasive prey species is the key factor determining the success/failure of the invasion and hence the effect of the predator-mediated apparent competition. Whereas if two prey species have different ecological characteristics, say different capture rates, then the success of the invasion no longer depends on the initial mass of the invasive prey species, but on the capture rates. In all cases, if the invasion succeeds, then the predator-mediated apparent competition's effectiveness essentially depends on the predator mortality rate. Precisely we show that the native prey species will die out (resp. persist) if the predator has a low (resp. moderate) mortality rate, while the predator will go extinct if it has a large mortality rate. Our study reveals that predator-mediated apparent competition is a complicated ecological process, and its effects and biological consequences depend upon many possible factors.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 5\",\"pages\":\"47\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460439/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02286-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02286-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Effects and biological consequences of the predator-mediated apparent competition I: ODE models.
Predator-mediated apparent competition is an indirect negative interaction between two prey species mediated by a shared predator, which can lead to changes in population dynamics, competition outcomes and community structures. This paper is devoted to investigating the effects and biological consequences of the predator-mediated apparent competition based on a two prey species (one is native and the other is invasive) and one predator model with Holling type I and II functional responses. Through the analytical results and case studies alongside numerical simulations, we find that the initial mass of the invasive prey species, capture rates of prey species, and the predator mortality rate are all important factors determining the success/failure of invasions and the species coexistence/extinction. The global dynamics can be completely classified for the Holling type I functional response, but can only be partially determined for the Holling type II functional response. For the Holling type I functional response, we find that whether the invasive prey species can successfully invade to induce the predator-mediated apparent competition is entirely determined by the capture rates of prey species. For the Holling type II functional response, the dynamics are more complicated. First, if two prey species have the same ecological characteristics, then the initial mass of the invasive prey species is the key factor determining the success/failure of the invasion and hence the effect of the predator-mediated apparent competition. Whereas if two prey species have different ecological characteristics, say different capture rates, then the success of the invasion no longer depends on the initial mass of the invasive prey species, but on the capture rates. In all cases, if the invasion succeeds, then the predator-mediated apparent competition's effectiveness essentially depends on the predator mortality rate. Precisely we show that the native prey species will die out (resp. persist) if the predator has a low (resp. moderate) mortality rate, while the predator will go extinct if it has a large mortality rate. Our study reveals that predator-mediated apparent competition is a complicated ecological process, and its effects and biological consequences depend upon many possible factors.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.