Kyle M Benowitz, Zachery M Esterline, Allina A Win, Vincent A Formica, Edmund D Brodie
{"title":"分叉真菌甲虫Bolitotherus cornutus的染色体水平基因组组装,这是研究野生社会进化的模式系统。","authors":"Kyle M Benowitz, Zachery M Esterline, Allina A Win, Vincent A Formica, Edmund D Brodie","doi":"10.1093/jhered/esaf071","DOIUrl":null,"url":null,"abstract":"<p><p>The forked fungus beetle Bolitotherus cornutus has long served as a model organism for the study of population ecology, behavior, chemical ecology, and natural selection in the wild. Today, it has become one of the best model systems for the understanding of social evolution and group selection. To understand the mechanistic drivers of group selection and its ultimate evolutionary consequences, it is crucial to begin studying these traits at the molecular level. Here, we take the first necessary step towards these goals by producing a chromosome-level genome assembly for this species. Using a combination of PacBio HiFi and Hi-C sequencing technologies, we produce a 196 Mb genome assembly with ten major chromosomal scaffolds as well as an assembled mitochondrial genome. We also provide a carefully curated annotation of 12,459 protein-coding genes. The quality and completeness of these resources present essential tools for future genetic and genomic studies of B. cornutus.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A chromosome-level genome assembly of the forked fungus beetle Bolitotherus cornutus, a model system for studying social evolution in the wild.\",\"authors\":\"Kyle M Benowitz, Zachery M Esterline, Allina A Win, Vincent A Formica, Edmund D Brodie\",\"doi\":\"10.1093/jhered/esaf071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The forked fungus beetle Bolitotherus cornutus has long served as a model organism for the study of population ecology, behavior, chemical ecology, and natural selection in the wild. Today, it has become one of the best model systems for the understanding of social evolution and group selection. To understand the mechanistic drivers of group selection and its ultimate evolutionary consequences, it is crucial to begin studying these traits at the molecular level. Here, we take the first necessary step towards these goals by producing a chromosome-level genome assembly for this species. Using a combination of PacBio HiFi and Hi-C sequencing technologies, we produce a 196 Mb genome assembly with ten major chromosomal scaffolds as well as an assembled mitochondrial genome. We also provide a carefully curated annotation of 12,459 protein-coding genes. The quality and completeness of these resources present essential tools for future genetic and genomic studies of B. cornutus.</p>\",\"PeriodicalId\":54811,\"journal\":{\"name\":\"Journal of Heredity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jhered/esaf071\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esaf071","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
A chromosome-level genome assembly of the forked fungus beetle Bolitotherus cornutus, a model system for studying social evolution in the wild.
The forked fungus beetle Bolitotherus cornutus has long served as a model organism for the study of population ecology, behavior, chemical ecology, and natural selection in the wild. Today, it has become one of the best model systems for the understanding of social evolution and group selection. To understand the mechanistic drivers of group selection and its ultimate evolutionary consequences, it is crucial to begin studying these traits at the molecular level. Here, we take the first necessary step towards these goals by producing a chromosome-level genome assembly for this species. Using a combination of PacBio HiFi and Hi-C sequencing technologies, we produce a 196 Mb genome assembly with ten major chromosomal scaffolds as well as an assembled mitochondrial genome. We also provide a carefully curated annotation of 12,459 protein-coding genes. The quality and completeness of these resources present essential tools for future genetic and genomic studies of B. cornutus.
期刊介绍:
Over the last 100 years, the Journal of Heredity has established and maintained a tradition of scholarly excellence in the publication of genetics research. Virtually every major figure in the field has contributed to the journal.
Established in 1903, Journal of Heredity covers organismal genetics across a wide range of disciplines and taxa. Articles include such rapidly advancing fields as conservation genetics of endangered species, population structure and phylogeography, molecular evolution and speciation, molecular genetics of disease resistance in plants and animals, genetic biodiversity and relevant computer programs.