Isabela do O, Oscar E Gaggiotti, Pierre de Villemereuil, Jerome Goudet
{"title":"一种在结构种群中确定局部适应性的方法。","authors":"Isabela do O, Oscar E Gaggiotti, Pierre de Villemereuil, Jerome Goudet","doi":"10.1371/journal.pgen.1011871","DOIUrl":null,"url":null,"abstract":"<p><p>Species occupy diverse, heterogeneous environments, which expose populations to spatially varied selective pressures. Populations in different environments can diverge due to local adaptation. However, neutral evolution can also drive population divergence. Thus, testing for local adaptation requires a neutral baseline for population differentiation. The classical QST-FST comparison was developed for this purpose. Yet, QST-FST frequently fails to account for the complexities of population structure because the theory underlying this comparison assumes that all subpopulations are equally related, resulting in inflated false positive rates in metapopulations that deviate from the island model. To address this limitation we use estimates of between- and within-population relatedness to model population structure. Using those relatedness matrices, we infer the between- and within-population ancestral additive genetic variances under a mixed-effects model. Under neutrality, these inferred variances are expected to be equal. We propose here a test to detect selection based on the comparison of these two estimates of the ancestral variance and we compare its performance with earlier solutions. We find our method is well calibrated across various population structures and has high power to detect adaptive divergence.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 9","pages":"e1011871"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479014/pdf/","citationCount":"0","resultStr":"{\"title\":\"A method for identifying local adaptation in structured populations.\",\"authors\":\"Isabela do O, Oscar E Gaggiotti, Pierre de Villemereuil, Jerome Goudet\",\"doi\":\"10.1371/journal.pgen.1011871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Species occupy diverse, heterogeneous environments, which expose populations to spatially varied selective pressures. Populations in different environments can diverge due to local adaptation. However, neutral evolution can also drive population divergence. Thus, testing for local adaptation requires a neutral baseline for population differentiation. The classical QST-FST comparison was developed for this purpose. Yet, QST-FST frequently fails to account for the complexities of population structure because the theory underlying this comparison assumes that all subpopulations are equally related, resulting in inflated false positive rates in metapopulations that deviate from the island model. To address this limitation we use estimates of between- and within-population relatedness to model population structure. Using those relatedness matrices, we infer the between- and within-population ancestral additive genetic variances under a mixed-effects model. Under neutrality, these inferred variances are expected to be equal. We propose here a test to detect selection based on the comparison of these two estimates of the ancestral variance and we compare its performance with earlier solutions. We find our method is well calibrated across various population structures and has high power to detect adaptive divergence.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 9\",\"pages\":\"e1011871\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011871\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011871","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A method for identifying local adaptation in structured populations.
Species occupy diverse, heterogeneous environments, which expose populations to spatially varied selective pressures. Populations in different environments can diverge due to local adaptation. However, neutral evolution can also drive population divergence. Thus, testing for local adaptation requires a neutral baseline for population differentiation. The classical QST-FST comparison was developed for this purpose. Yet, QST-FST frequently fails to account for the complexities of population structure because the theory underlying this comparison assumes that all subpopulations are equally related, resulting in inflated false positive rates in metapopulations that deviate from the island model. To address this limitation we use estimates of between- and within-population relatedness to model population structure. Using those relatedness matrices, we infer the between- and within-population ancestral additive genetic variances under a mixed-effects model. Under neutrality, these inferred variances are expected to be equal. We propose here a test to detect selection based on the comparison of these two estimates of the ancestral variance and we compare its performance with earlier solutions. We find our method is well calibrated across various population structures and has high power to detect adaptive divergence.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.