在压力下保持生产:在连续发酵下脂性耶氏菌β-胡萝卜素生产的系统评价。

IF 14.9 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Alyssa M Worland, Vincent A Xu, Maria F Duran, Philip Gitman, Kristen Hunter-Cevera, Cinzia Klemm, Yufei Sun, Diego Ruiz Sanchis, Rodrigo Ledesma-Amaro, Kyle R Pomraning, Deepti Tanjore, Mark Blenner, Yinjie J Tang
{"title":"在压力下保持生产:在连续发酵下脂性耶氏菌β-胡萝卜素生产的系统评价。","authors":"Alyssa M Worland, Vincent A Xu, Maria F Duran, Philip Gitman, Kristen Hunter-Cevera, Cinzia Klemm, Yufei Sun, Diego Ruiz Sanchis, Rodrigo Ledesma-Amaro, Kyle R Pomraning, Deepti Tanjore, Mark Blenner, Yinjie J Tang","doi":"10.1016/j.tibtech.2025.08.019","DOIUrl":null,"url":null,"abstract":"<p><p>Scaling biomanufacturing from laboratory to industrial scale poses significant challenges, especially for continuous fermentation. This study investigates these challenges using a β-carotene-producing Yarrowia lipolytica strain. Through fermentation experiments and proteomics, we have assessed how fermentation modes, carbon sources, dissolved O<sub>2</sub>, and media composition influence long-term bioproduction. In shaking flask subcultures, the strain maintained β-carotene production for over ~30 generations. However, in continuous fermentations, subpopulation shifted toward faster-growing low-producers, leading to significant production losses within just ~18 growth generations. This process was accelerated by O<sub>2</sub> limitation and high bioreactor dilution rates. Using canola oil as a carbon source increases population heterogeneity but enhances β-carotene biosynthesis and prolongs production compared with glucose-based media. Kinetic modeling suggests that strains optimized for the highest production in laboratory settings may be less robust in industrial environments, where suboptimal yet faster-growing variants gain a competitive edge under prolonged stress and ultimately shape overall continuous fermentation performance.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Staying productive under pressure: systems evaluations of β-carotene production in Yarrowia lipolytica under continuous fermentation.\",\"authors\":\"Alyssa M Worland, Vincent A Xu, Maria F Duran, Philip Gitman, Kristen Hunter-Cevera, Cinzia Klemm, Yufei Sun, Diego Ruiz Sanchis, Rodrigo Ledesma-Amaro, Kyle R Pomraning, Deepti Tanjore, Mark Blenner, Yinjie J Tang\",\"doi\":\"10.1016/j.tibtech.2025.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scaling biomanufacturing from laboratory to industrial scale poses significant challenges, especially for continuous fermentation. This study investigates these challenges using a β-carotene-producing Yarrowia lipolytica strain. Through fermentation experiments and proteomics, we have assessed how fermentation modes, carbon sources, dissolved O<sub>2</sub>, and media composition influence long-term bioproduction. In shaking flask subcultures, the strain maintained β-carotene production for over ~30 generations. However, in continuous fermentations, subpopulation shifted toward faster-growing low-producers, leading to significant production losses within just ~18 growth generations. This process was accelerated by O<sub>2</sub> limitation and high bioreactor dilution rates. Using canola oil as a carbon source increases population heterogeneity but enhances β-carotene biosynthesis and prolongs production compared with glucose-based media. Kinetic modeling suggests that strains optimized for the highest production in laboratory settings may be less robust in industrial environments, where suboptimal yet faster-growing variants gain a competitive edge under prolonged stress and ultimately shape overall continuous fermentation performance.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2025.08.019\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.08.019","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

将生物制造从实验室扩展到工业规模提出了重大挑战,特别是对于连续发酵。本研究使用产生β-胡萝卜素的脂性耶氏菌菌株来研究这些挑战。通过发酵实验和蛋白质组学,我们评估了发酵模式、碳源、溶解氧和培养基组成如何影响长期生物生产。在摇瓶传代培养中,菌株保持β-胡萝卜素产量超过30代。然而,在连续发酵过程中,亚种群向生长速度更快的低产量群体转移,仅在18个生长代内就造成了重大的产量损失。氧气限制和高生物反应器稀释率加速了这一过程。与以葡萄糖为基础的培养基相比,使用菜籽油作为碳源增加了种群异质性,但增强了β-胡萝卜素的生物合成并延长了产量。动力学模型表明,在实验室环境中为最高产量而优化的菌株在工业环境中可能不那么健壮,在工业环境中,次优但生长更快的变体在长期压力下获得竞争优势,并最终形成整体连续发酵性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Staying productive under pressure: systems evaluations of β-carotene production in Yarrowia lipolytica under continuous fermentation.

Scaling biomanufacturing from laboratory to industrial scale poses significant challenges, especially for continuous fermentation. This study investigates these challenges using a β-carotene-producing Yarrowia lipolytica strain. Through fermentation experiments and proteomics, we have assessed how fermentation modes, carbon sources, dissolved O2, and media composition influence long-term bioproduction. In shaking flask subcultures, the strain maintained β-carotene production for over ~30 generations. However, in continuous fermentations, subpopulation shifted toward faster-growing low-producers, leading to significant production losses within just ~18 growth generations. This process was accelerated by O2 limitation and high bioreactor dilution rates. Using canola oil as a carbon source increases population heterogeneity but enhances β-carotene biosynthesis and prolongs production compared with glucose-based media. Kinetic modeling suggests that strains optimized for the highest production in laboratory settings may be less robust in industrial environments, where suboptimal yet faster-growing variants gain a competitive edge under prolonged stress and ultimately shape overall continuous fermentation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信